St. Michael's

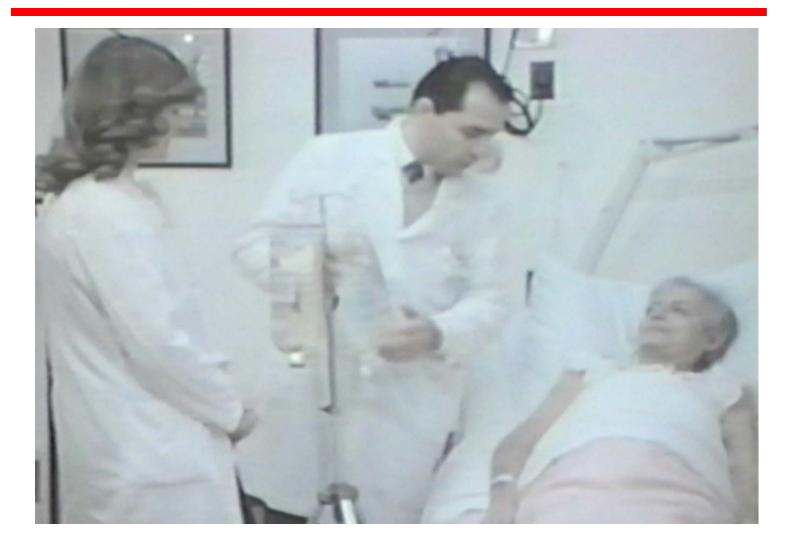
Inspired Care. Inspiring Science.

Introduction To The Peritoneal Dialysis Outcomes and Practice Pattern Study

Western Canada PD Days Friday February 8, 2013 Vancouver, British Columbia

Jeffrey Perl MD SM FRCP(C) Division of Nephrology St. Michaels Hospital University of Toronto

Disclosures


Speaking Honoraria, Consultancy Fees:
 Baxter Healthcare Canada
 Amgen, Canada
 Hemosphere USA
 Shire Canada

□Unrestricted Educational Fellowship: □Baxter Healthcare Canada

□ Salary Support:

□ Arbor Research Collaborative For Health

Remembering a Colleague, a Mentor and a Friend

Objectives

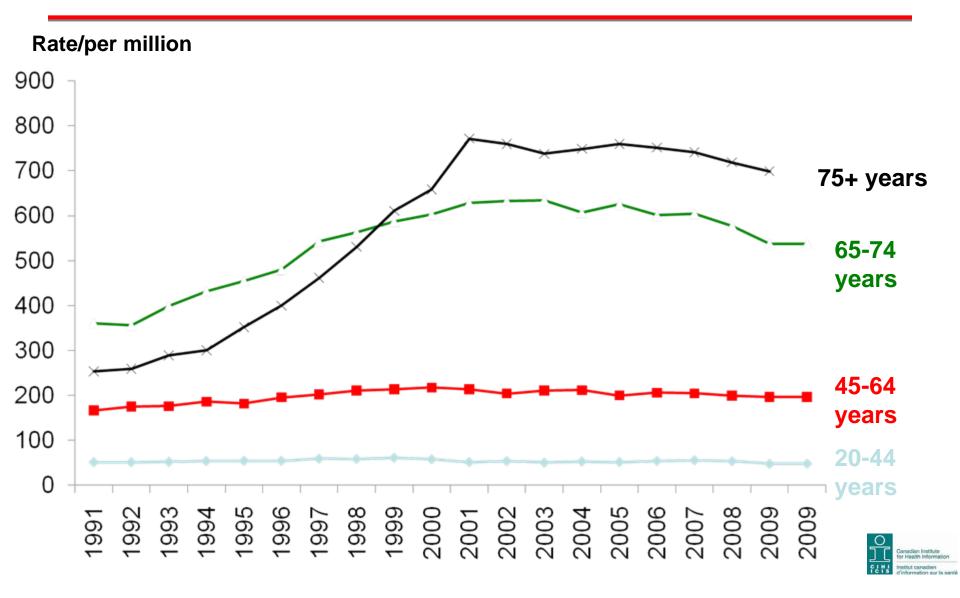
Understand the reasons for discontinuation of PD therapy

Understand Trends in PD Technique Failure in Canada

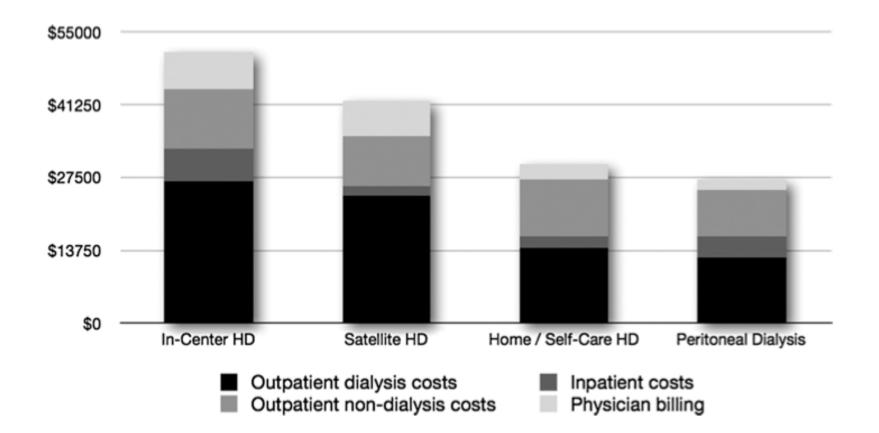
□Review patient, therapy and facility-specific risk factors for transfer to HD from PD

Introduce The Peritoneal Dialysis Outcomes Practice Patterns Study (PDOPPS) as a Means to Recognize Modifiable Causes of Peritoneal Dialysis Technique Failure

Objectives

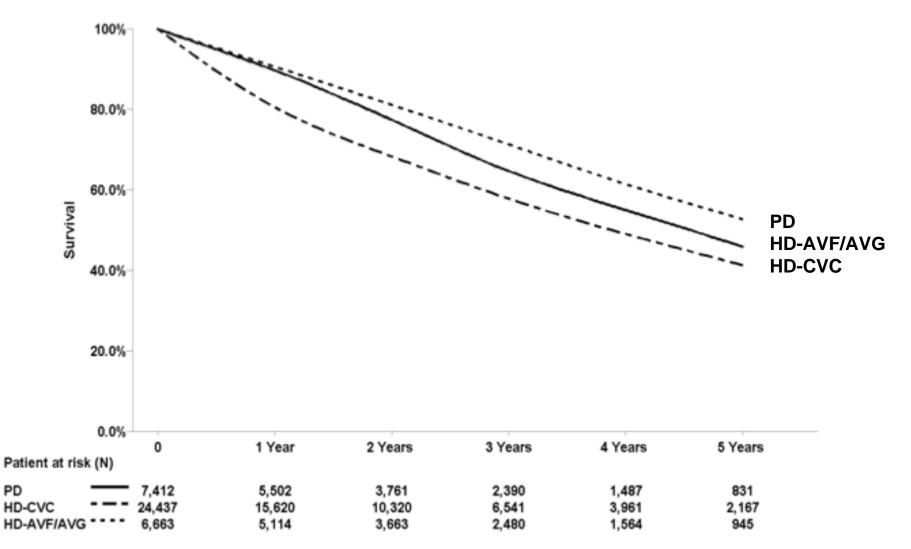

Understand the reasons for discontinuation of PD therapy

□Understand Trends in PD Technique Failure in Canada


□Review patient, therapy and facility-specific risk factors for transfer to HD from PD

Introduce The Peritoneal Dialysis Outcomes Practice Patterns Study (PDOPPS) as a Means to Recognize Modifiable Causes of Peritoneal Dialysis Technique Failure

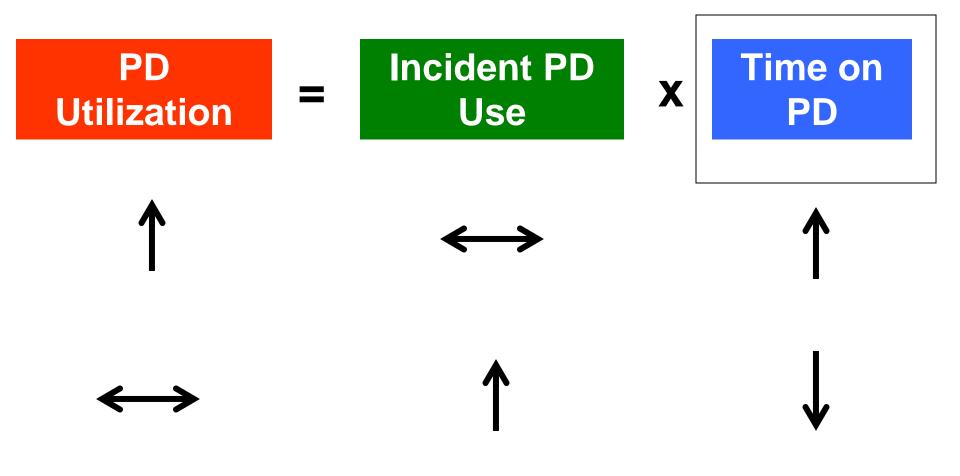
Incident ESRD By Age Group in Canada: Rate Per Million



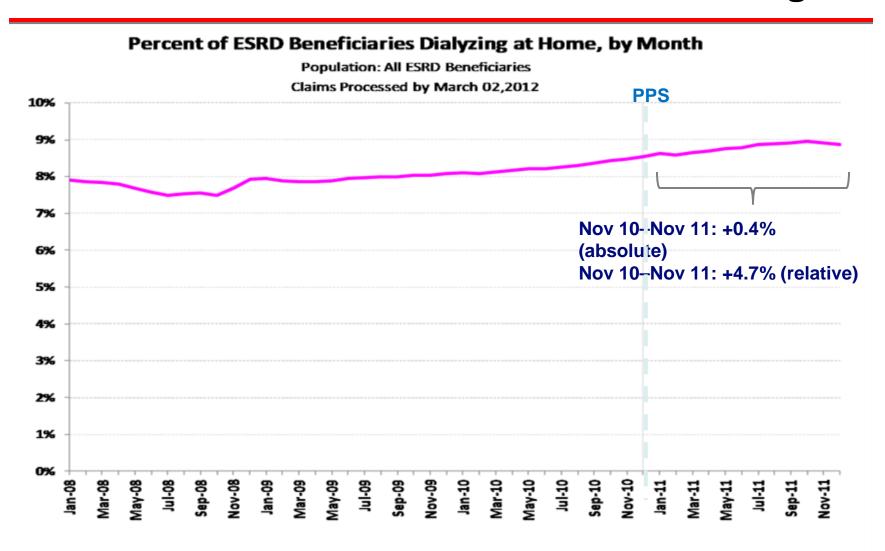
Cost Per Year: PD vs. HD

Klarenbach et al Seminars in Nephrology, Vol 29, No 5, 2009

Survival: PD vs. HD


Perl et al JASN 2011

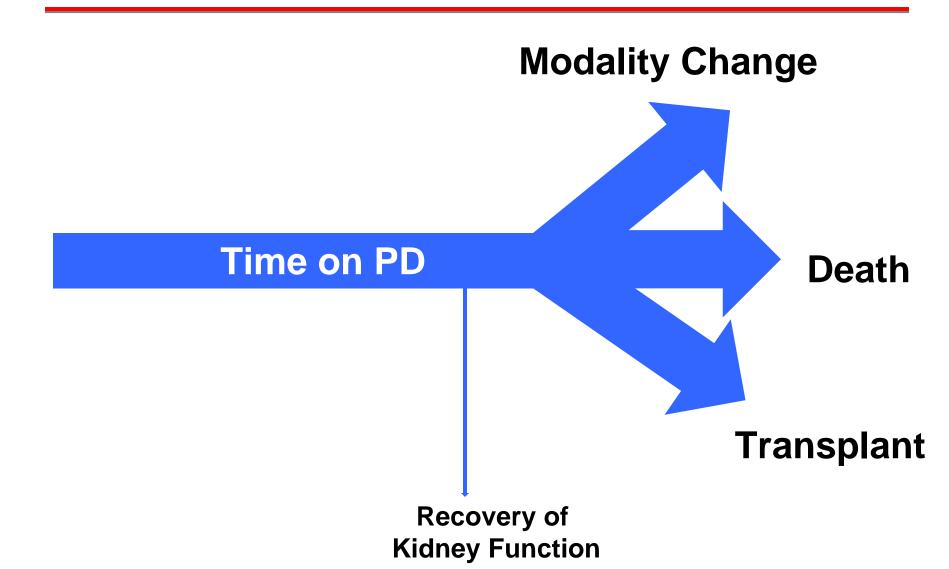
And Yet Incident PD Utilization has been decreasing in Canada



Perl.... Nessim CJASN 2012

Increasing PD Utilization

CMS ESRD Data: Overview of 2011 Claims-Based Monitoring


8% total in 2009 (7% PD, 1% HHD); PD in 6% of incident pts)

www.cms.gov

Greater PD Uptake in US: A New Frontier!

- Assuming projections hold, will greater PD use be due to:
 - Uptake by 'novice facilities'
 - Uptake among under-represented patient groups?
 - Both?
- What will the effects be on PD technique survival?

Outcomes For Incident PD Patients

Definition of "Technique Failure"

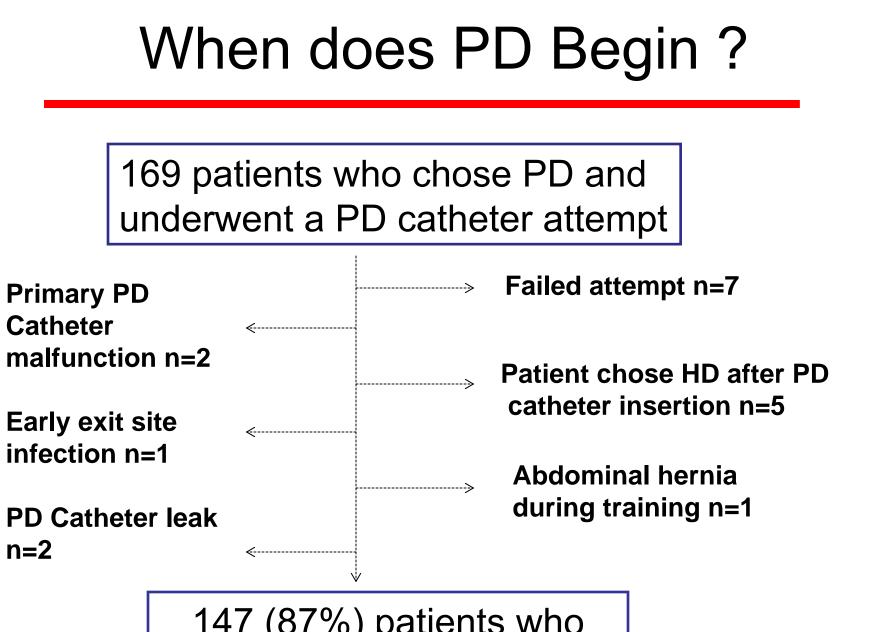
any PD-related complication that leads to the permanent cessation of the therapy

□When does PD begin ?

□Should it include death and change in modality ?

□What is permanent?

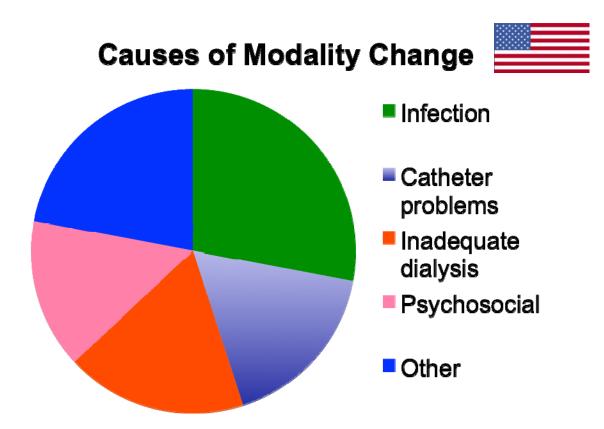
When Does PD Begin ?


When Does PD Begin?

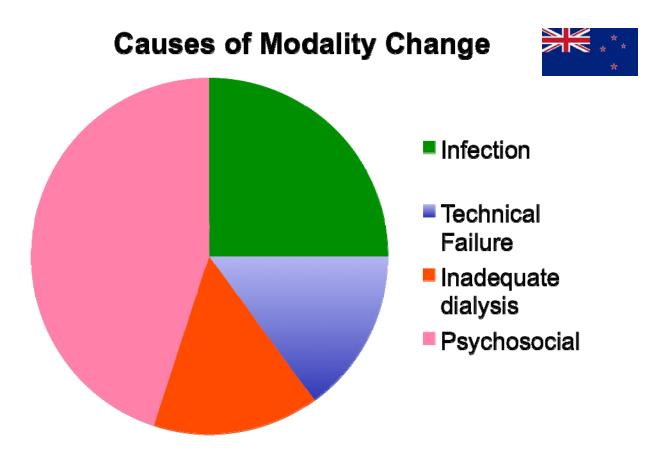
3886 patients who chose PD and Underwent PD Catheter Insertion in Ontario April 2002 – March 2010

Death/Transplant/No Dialysis: n= 175 (5%) Hemodialysis: n= 445 (12%)

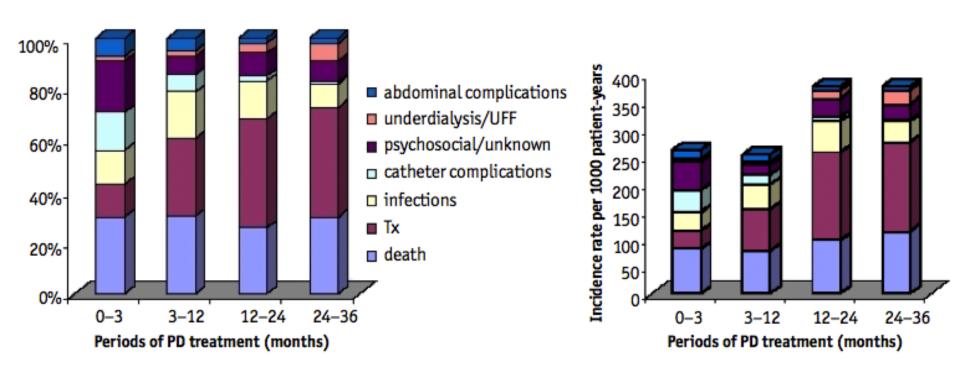
3227(83%) patients had at least 4 weeks of PD use


Perl.. Oliver et al Unpublished

147 (87%) patients who received PD therapy


Oliver et al NDT 2011

Causes of Modality Change Among PD patients


Mujais et al Kidney International (2006) 70, S21–S26

Causes of Modality Change Among PD patients

Jose et al Nephrology 16 (2011) 19-29

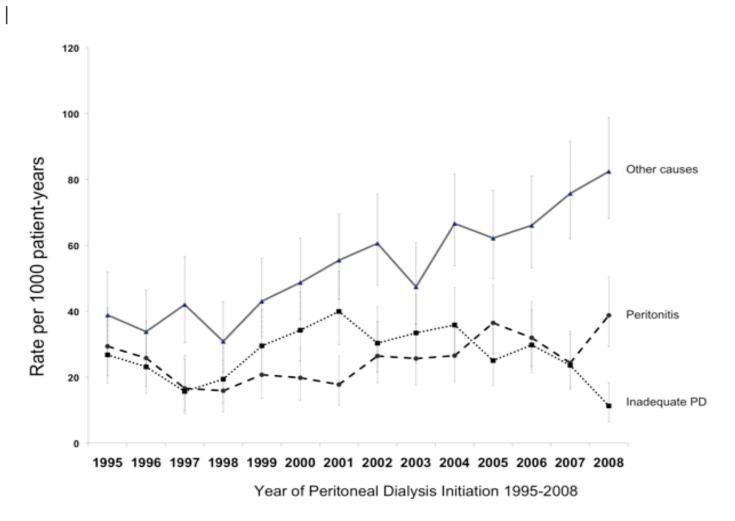
Causes of Modality Change Vary By Time on Therapy

Why Do Modality Changes Occur After Peritonitis

- □ A marker of non-adherence to therapy
- □ A marker of functional decline and/or increased comorbidity
- □ Severe intraperitoneal inflammation
 - □ loss of ultrafiltration capacity
 - Loss of small solute clearance
- □ Fear of second episode from patient
- Medical need to remove the catheter for resolution
 - Concomitant exit site infection
 - □ Fungal
 - Recurrent or repeat episode
 - Not responding to medical therapy
 - Temporary vs. Permanent HD
 - □ Patient-driven
 - D Physician-driven
 - □ System-driven

Psychosocial Causes of Modality Change From PD

Inability to perform self-care dialysis


- Acquired comorbidities
- Loss of caregiver/caregiver burnout
- Change in living conditions
- •Deteriorating functional and cognitive status

Patient preference

Play a role in other causes of modality switch
Patient burnout
Poorly understood

Cause of Modality Change Among PD Patients: Canadian Data



Peritonitis Inadequate PD TOther Cause

Perl.... Nessim CJASN 2012

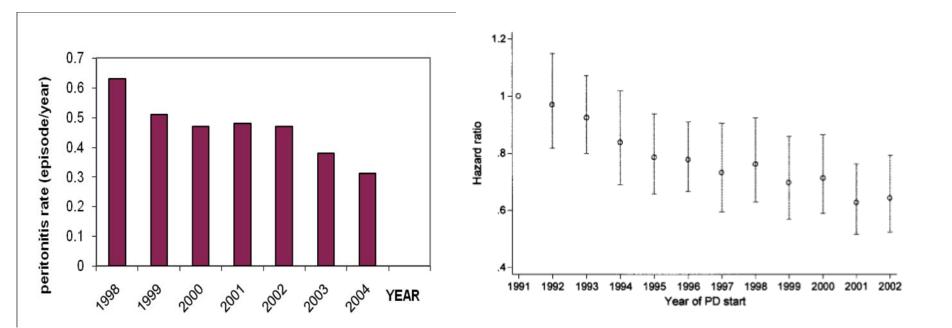
The 160th PD Patient at UHN

Objectives

Understand the reasons for discontinuation of PD therapy

Understand Trends in PD Technique Failure in Canada

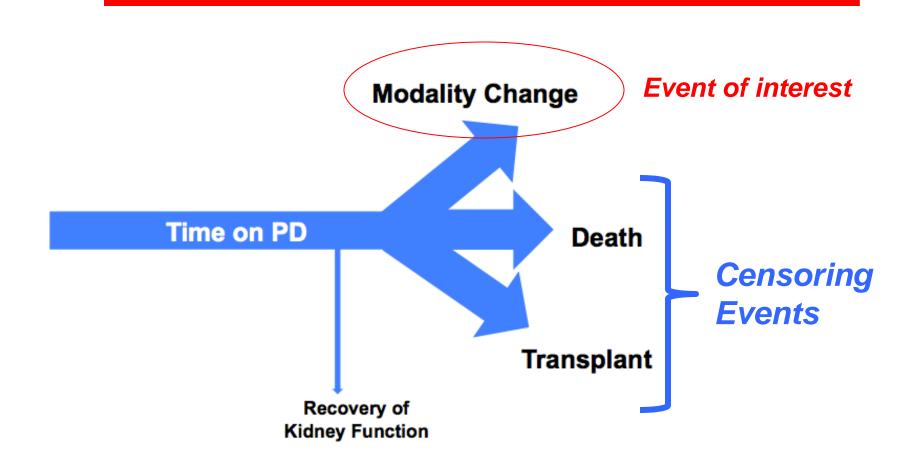
□Review patient, therapy and facility-specific risk factors for transfer to HD from PD


Introduce The Peritoneal Dialysis Outcomes Practice Patterns Study (PDOPPS) as a Means to Recognize Modifiable Causes of Peritoneal Dialysis Technique Failure

The Last 15 years of PD in Canada

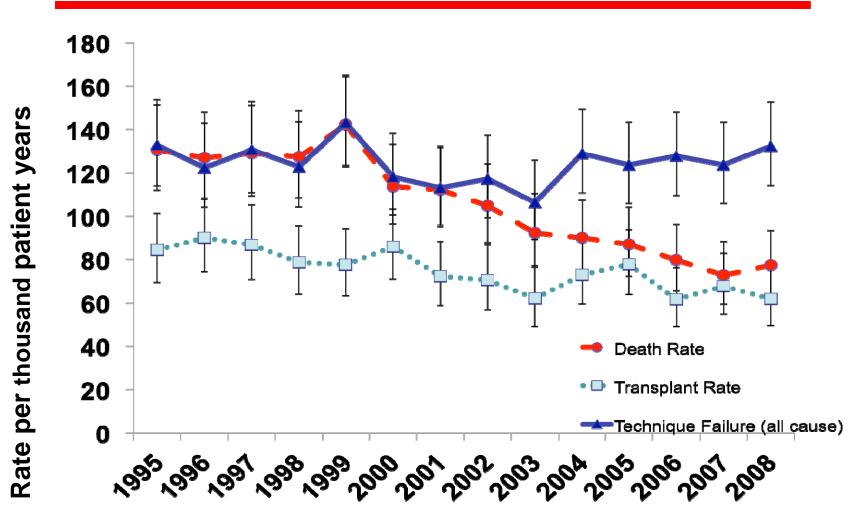
- Increasing availability and use of novel PD solutions
- Less stringent guidelines for small solute removal
- Improvement peritonitis prevention strategies i.e.
 - Improvements in PD connectology
 - Use of exit site prophylaxis

? Impact on Time on PD Therapy


Rates of PD Peritonitis Have Been Decreasing

1. Baxter POET Database: Courtesy Dr. Sharon Nessim

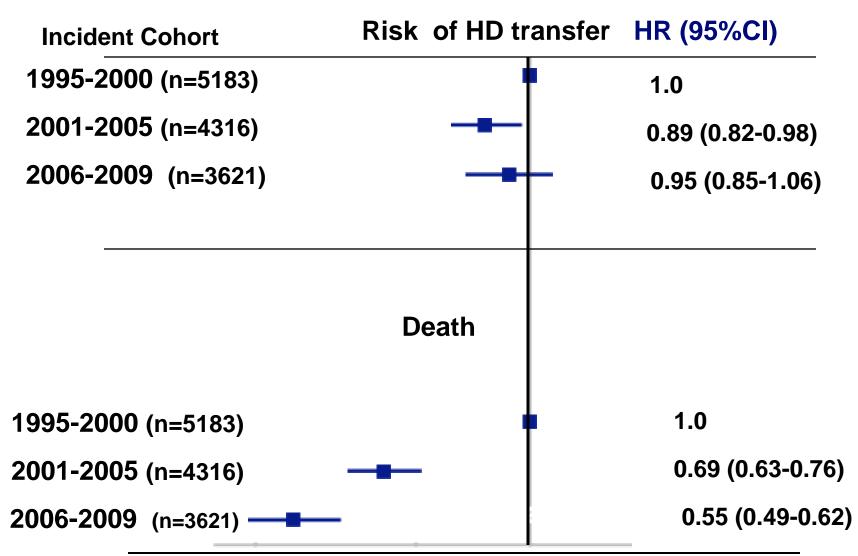
2. McDonald et al PDI, 2004 VOL. 24, NO. 4


Time on PD: A Tale of Competing Risks

Time on PD: A Tale of Competing Risks

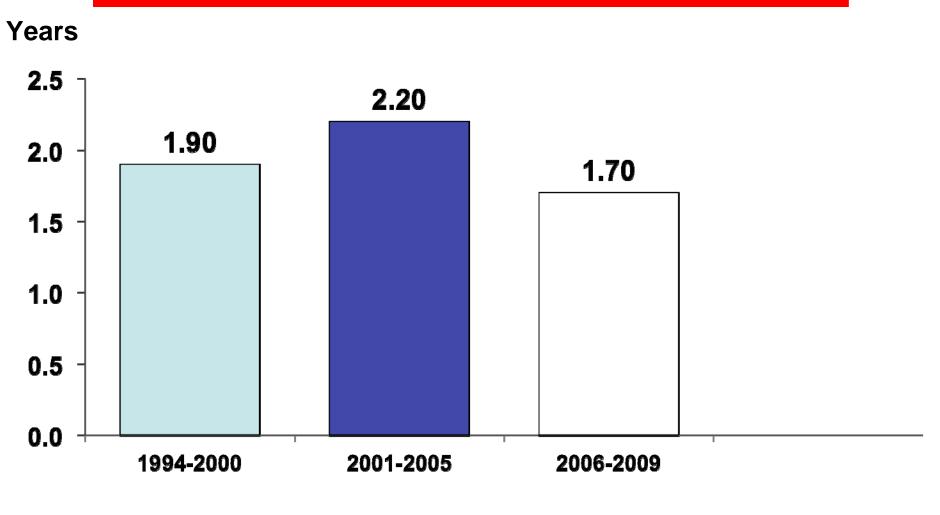
- Traditional analyses of time to PD modality switch have censored patients at death and transplantation
- Requires that individuals who are censored have the same risk of modality switch as individuals who are not (non-informative)
- Patients that received a transplant might have been at lower risk of TF had they remained on PD
- Individuals that died might have been at higher risk of TF had they survived.

Event Rates over Time Among Incident PD patients

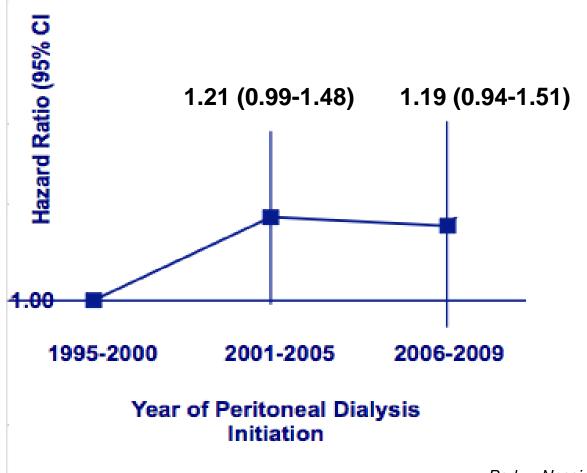


Perl.... Nessim CJASN 2012

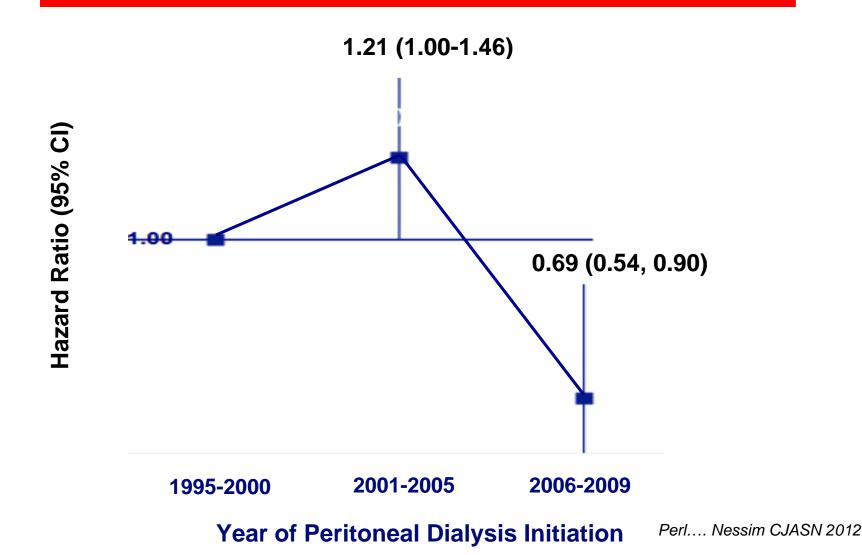
Patient Characteristics At PD Initiation


	Year of Dialysis Initiation			
	1995–2000 (<i>n</i> =5183)	2001–2005 (<i>n</i> =4316)	2006–2009 (<i>n</i> =3621)	P Value
Age group (yr)				
18-44	20.6	15.9	14.7	< 0.001
45–54	16.6	17	16.7	
55–64	20.9	22.5	24.4	
65–74	26.5	25.3	24.9	
≥ 75	15.5	19.3	19.2	
Race	71 0		(20	-0.001
Caucasian	71.3	70.9	67.9	< 0.001
Asian	7.7	8.7	9	
black	3.5	3.4	3.9	
other	10	12.8	13.6	
unknown	7.5	4.2	5.7	0.77
Female	43.1	42.5	42.5	0.77
Primary diagnosis	40.0			-0.004
GN	18.8	17.4	16.2	< 0.001
diabetes	34.2	36.6	35.4	
renal vascular disease	18.3	17.3	17.5	
polycystic kidney disease	5.1	6.9	6.8	
other	10.6	9.6	12.9	
unknown	13	12.2	11.1	
Comorbid conditions				
diabetes ^a	5.7	5.7	8.3	< 0.001
coronary artery disease ^b	29.8	26.1	21	< 0.001
peripheral vascular disease	13.7	13.9	11.1	< 0.001
malignancy	6.6	6.8	7.6	0.18
lung disease	7.2	6.7	5.4	0.003
pulmonary edema	22.8	13.8	9.6	< 0.001
hypertension	81.5	87.8	82.7	< 0.001
current smoker	12.2	12.4	11.8	0.69
Automated PD (%)	29.1	28.4	26.5	0.03
Body mass index (kg/m ²)	24.6 (6.0)	25.7 (6.4)	26.6 (7.3)	< 0.001
Late referral (%) ^c	—	17.7	11.1	< 0.001
Hemoglobin (g/L) ^c	—	111 (21)	111 (18)	0.42
Estimated GFR (ml/min/1.73 m ²) ^{c,d}	—	8.9 (4.7)	9.6 (5.0)	< 0.001
Albumin $(g/L)^c$	()	36 (7)	37 (8)	< 0.001
Prevalent PD center size ^e	25 (52)	26 (37)	27 (49)	—

Adjusted Risk of Death and modality switch By Incident PD Cohort Period


Adjusted for age, race, sex, body mass index, ESRD comorbidity index, primary diagnosis, PD modality (automated PD versus continuous ambulatory PD), province, and PD center size
Perl.... Nessim CJASN 2012

Median Time To Modality Change


Year of Peritoneal Dialysis Initiation

Peritonitis-Related modality switch

Perl.... Nessim CJASN 2012

Modality Switch Related to Inadequate Dialysis

Impact of Age and Era on The risk of All Cause PD Technique Survival

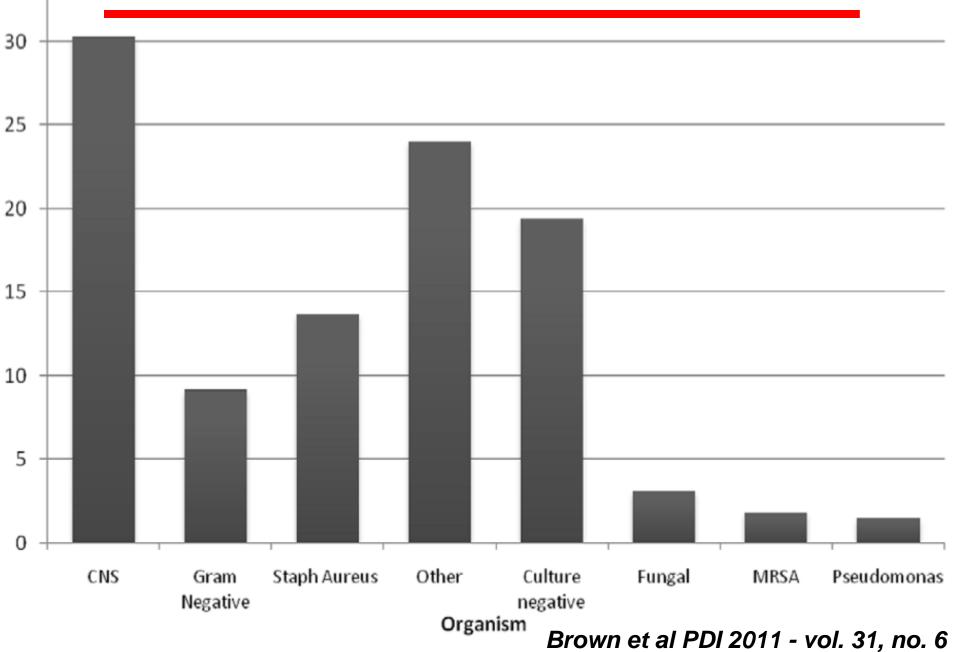
	1995-2000	2001-2005	2006-2009
Age <u><</u> 65	1.0	0.95 (0.85-1.06)	1.02 (0.90-1.15)
Age > 65	1.0	0.86 (0.75 ,0.97)	0.80 (0.69 ,0.93)

Perl.... Nessim CJASN 2012

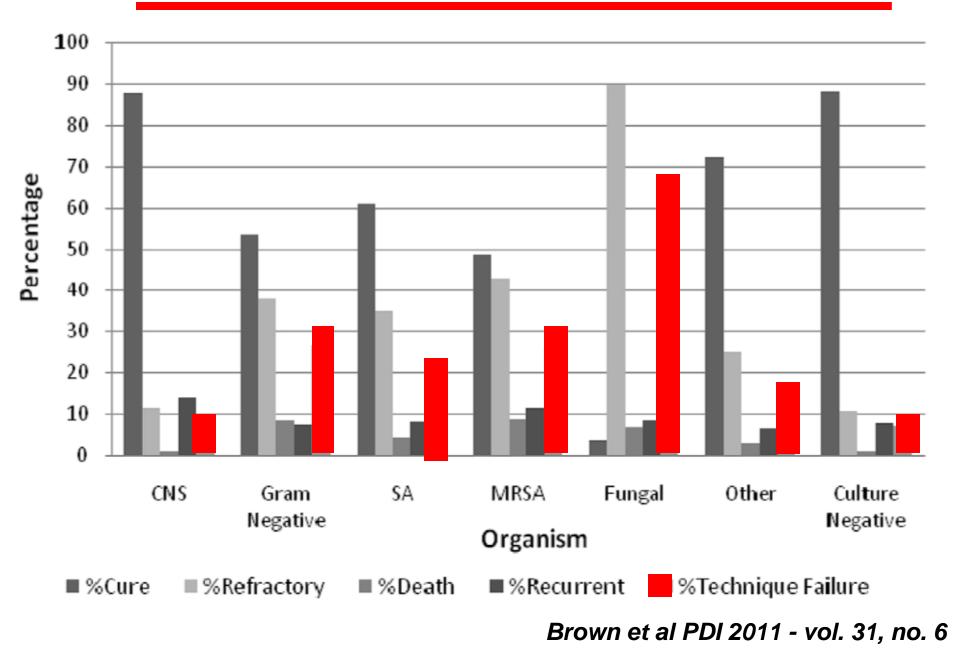
Impact of Era on PD Technique Survival: Summary

- Little improvement in rates of modality change from PD over time
 - ❑With the exception of patients over age of 65

Significant improvement in patient survival


Impact of Era on PD Technique Survival: Summary

□No change in rates of peritonitis-related transfer to HD


 Initial increase in rates of transfer to HD due to inadequate dialysis and recent decrease
 Less stringent guidelines for small solute removal Why No Improvement in Peritonitis-Related Transfers To Hemodialysis ?

- Globally improving peritonitis rates but no change in peritonitis related technique failure
- More aggressive at catheter removal after peritonitis episode
- Greater reduction in peritonitis episodes of more indolent organisms (i.e. CNST) less likely to lead to catheter removal

Percent of Peritonitis Episodes By Organism

Outcomes of Peritonitis By Organism

Improving Outcomes for Elderly PD Patients

- Not mediated by reduction in peritonitisrelated TF, or technique failure due to inadequate PD
- Largest growing segment of The ESRD population
- Increasing use of home-assisted PD for elderly patients across several regions in Canada

Impact of Assisted PD on Technique Survival

Is Assisted Peritoneal Dialysis Associated with Technique Survival When Competing Events Are Considered?


Thierry Lobbedez,* Christian Verger,[†] Jean-Philippe Ryckelynck,* Emmanuel Fabre,[†] and David Evans^{†‡§}

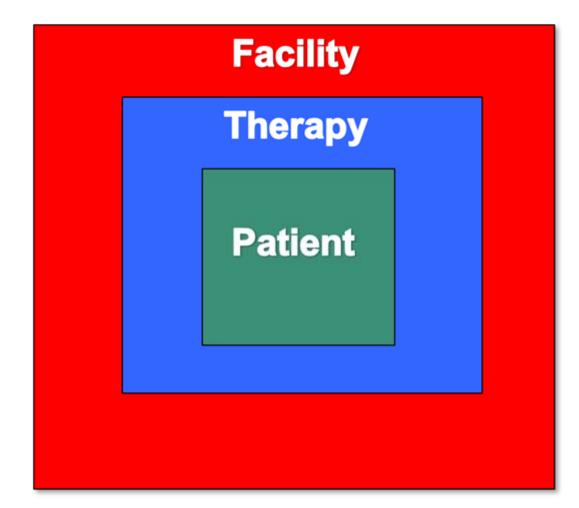
	Fine and Gray Model: Sub distribution Relative Hazard (95% CI)
Nurse-Assisted PD	0.81 (0.70–0.94)
Family-Assisted PD	0.72 (0.63–0.81)

Adjusted for age, sex, modified Charlson comorbidity index, and underlying nephropathy

Lobbedez et al CJASN: 612–618, 2012

ISPD: Istanbul

Objectives


Understand the reasons for discontinuation of PD therapy

Understand Trends in PD Technique Failure in Canada

Review patient, therapy and facility-specific risk factors for transfer to HD from PD

Introduce The Peritoneal Dialysis Outcomes Practice Patterns Study (PDOPPS) as a Means to Recognize Modifiable Causes of Peritoneal Dialysis Technique Failure

Risk Factors For Transfer to HD From PD

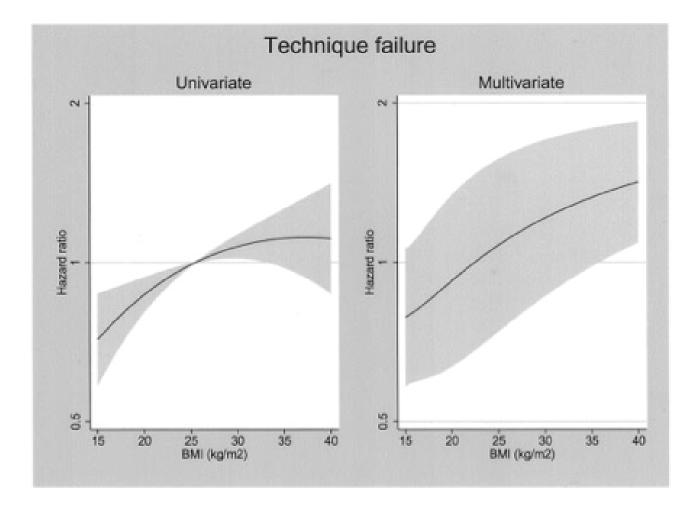
Patient Factors

□Age:

- CORR: 0.95 [0.91, 0.98] per year
- □French Registry: 0.98 [0.98–0.99] per year □USRDS: 1.0007 (p<0.0001)

Gender

- CORR: 0.9 [0.82-0.99] Females: Males
- □Consistent Across US, Canadian, French Registries


Diabetes

CORR: 1.16 [1.00, 1.34]

- Aboriginals 1.48 [1.07-2.03]
- □ Blacks 1.27 [1.01-1.61]

Relationship Between BMI and Risk of Transfer to HD

McDonald et al PDI, 2004 VOL. 24, NO. 4

Socioeconomic Factors

Variable (n= 5162) (1999-2005)	AHR (95% CI)
Neighborhood education level ≤high school	2.9 [1.755–4.877]
Rural residence	0.9 [0.740–1.129]
Distanc Rurality Urban Large rural Small rural Remote rural	1.00 1.00 (0.93 to 1.06) 1.01 (0.86 to 1.19) 1.33 (1.05 to 1.69)

- 1. Chidambaram et al PDI 2011
- 2. Mehrotra et al PDI 2012

Distance From The Nephrologist

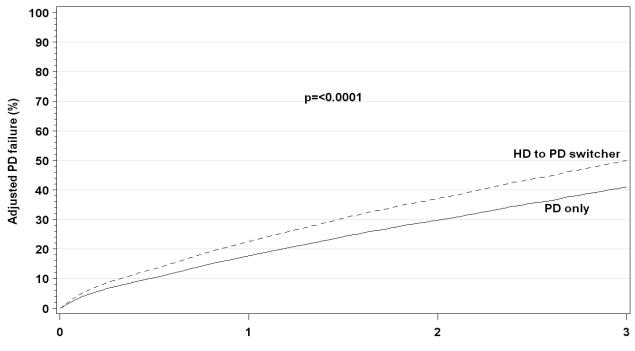
Distance From Nephrologist	Technique Failure Hazard	Mortality Hazard
Within 50 Km (ref)	1.0	1.0
50.1-100 Km	0.86 (0.75, 0.97)	1.17 (1.07, 1.27)
150.1-300 Km	0.78 (0.65, 0.94)	1.07 (0.95, 1.21)
> 300 Km	0.63 (0.50, 0.79)	1.15 (1.00, 1.32)

Toneli et al Kidney International (2007) 72, 1023–1028

Selected Therapy-Related Factors

CAPD vs. APD

□No consistent difference^{1,2}

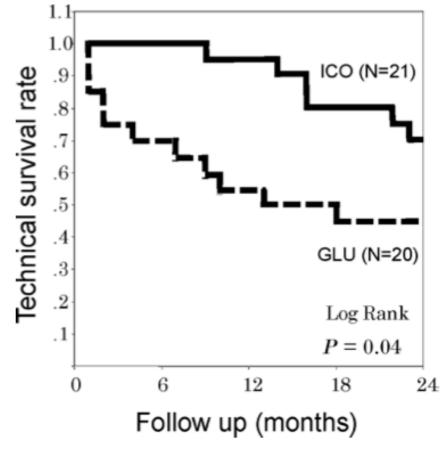

□Treatment by Indication Bias

□ CORR APD:CAPD AHR 1.02 [0.91, 1.14]³

Transfer from HD to PD relative to incident PD
 Increased risk of transfer to HD:⁴ AHR 1.2 [1.1-1.4]
 Increased risk of peritonitis:⁵ AHR 1.24 [1.1 to 1.40]
 Patient selection
 Adverse impact of HD on residual kidney function

Rabindranath NDT 2008
 Mehrotra KI 2009
 CORR unpublished
 Lobbeddez et al CJASN 2012
 Nessim et al CJASN 2009

Transfer to PD From HD



Time after dialysis start (Years)

		All-Cause Technique Failure
Overall		
PD Only		1.0
HD To PD	Within 90 days	1.31 [1.17, 1.45]
Switch	Between 91-180 days	1.45 [1.26, 1.68]
	Between 181-365 days	1.17 [0.98, 1.39]

Perl... Nessim et al Unpublished

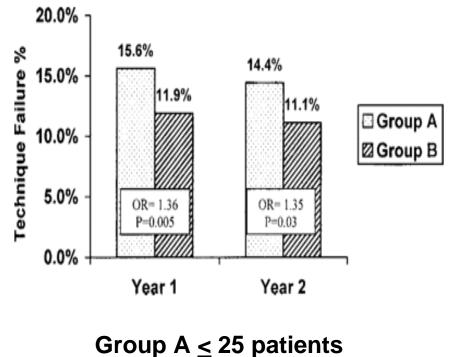
Impact of Icodextrin Use on Technique Survival

Takatori CJASN 2011

1.69 Technique failure (death-included)

Impact of Neutral-PH Low GDP PD Solutions on Technique Survival

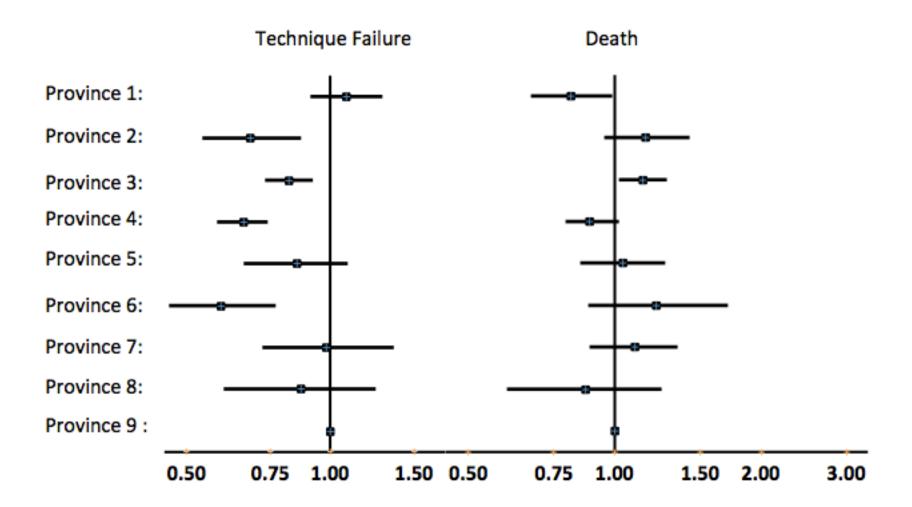
	Neutral pH, low	GDP	Standard glu	ucose		Risk Ratio	Risk Ratio
Study or Subgroup	Events	Total	Events		Weight	M-H, Random, 95% CI	M-H, Random, 95% CI
1.69.1 3 months							
Pajek 2009	0	13	1	12	1.1%	0.31 [0.01, 6.94]	
Weiss 2009	0	15	2	12	1.2%	0.16 [0.01, 3.09]	· · · · ·
Subtotal (95% CI)		28		24	2.2%	0.22 [0.03, 1.87]	
Total events	0		3				
Heterogeneity: Tau ² = 0.00;	Chi ² = 0.09, df =	1 (P = 0	.77); l² = 0%				
Test for overall effect: Z = 1.	39 (P = 0.17)	-					
1.69.2 24 weeks							
Feriani 1998	1	37	3	36	2.1%	0.32 [0.04, 2.97]	
Tranaeus 2000	0	70	0	36		Not estimable	
Subtotal (95% CI)		107		72	2.1%	0.32 [0.04, 2.97]	
Total events	1		3				
Heterogeneity: Not applicabl	e						
Test for overall effect: Z = 1.	00 (P = 0.32)						
1.69.3 12 months							
Choi 2008	3	51	3	53	4.2%	1.04 [0.22, 4.91]	
Fan 2008	3	57	5	61	5.3%	0.64 [0.16, 2.57]	
Kim 2009	8	48	5	43	9.5%	1.43 [0.51, 4.05]	
Szeto 2007	0	25	0	25		Not estimable	
Subtotal (95% CI)		181		182	19.0%	1.07 [0.51, 2.22]	•
Total events	14		13				
Heterogeneity: Tau ² = 0.00; Test for overall effect: Z = 0.		: 2 (P = 0	.66); l ² = 0%				
1.69.5 24 months							
Bajo 2011	2	13	6	20	4.9%	0.51 [0.12, 2.16]	
balANZ Trial	25	92	24	93	44.3%	1.05 [0.65, 1.70]	-
Fernandez-Perpen 2012	4	11	6	20	9.6%	1.21 [0.43, 3.39]	
Subtotal (95% CI)		116		133	58.9%	1.01 [0.67, 1.54]	•
Total events	31		36				
Heterogeneity: Tau ² = 0.00;		2 (P = 0	.60); l ² = 0%				
Test for overall effect: Z = 0.	07 (P = 0.95)						
1.69.6 3 years +							
Lai 2012	11	58	11	67	17.8%	1.16 [0.54, 2.47]	_ _ _
Subtotal (95% CI)		58		67	17.8%	1.16 [0.54, 2.47]	+
Total events	11		11				
Heterogeneity: Not applicabl	e						
Test for overall effect: Z = 0.	37 (P = 0.71)						
Total (95% CI)		490		478	100.0%	0.99 [0.72, 1.36]	
Total events	57		66				
Heterogeneity: Tau ² = 0.00;	Chi ² = 5.06, df =	9 (P = 0	.83); l² = 0%				0.01 0.1 1 10 1
Test for overall effect: Z = 0.	07 (P = 0.95)					F	avours experimental Favours control
Test for subgroup difference	s: Chi ² = 3.08, d	if = 4 (P =	= 0.54), l ² = 0%	6		'	areas appartmental revolution


Impact of Peritoneal Membrane Transport Characteristics on The Risk of Transfer to HD

Transport Type	Risk of Technique Failure
High (n=628)	0.88 (0.64-1.21)
High-average (n=1936)	1.17 (0.95-1.44)
Low-average (n=1145)	1.02 (0.77-1.35)
Low (n=96)	1.24 (0.67-2.29)

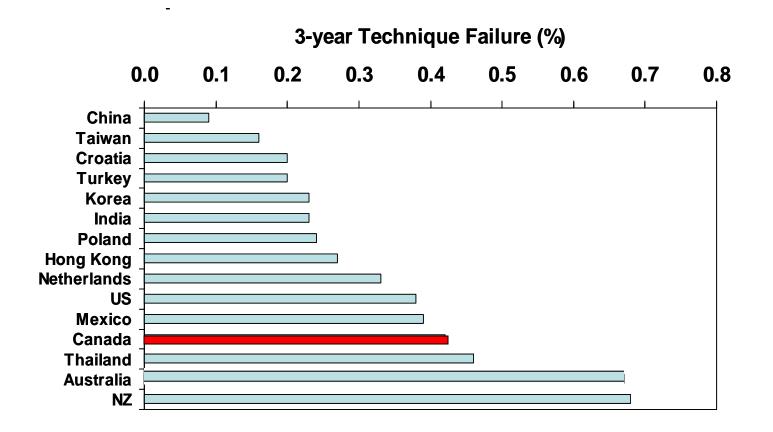
Johnson et al NDT 2010

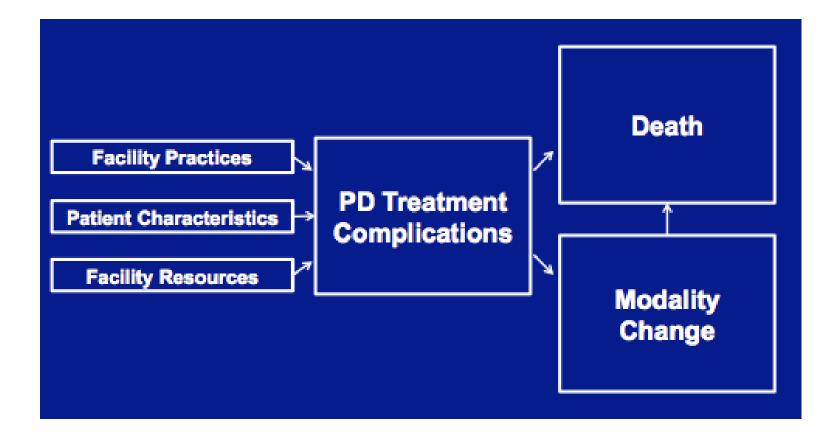
Impact of PD Centre Size


- Consistent and strong independent predictor of transfer to HD in Canada, USA, Australia and The Netherlands
- Associated with improved adherence to clinical practice guidelines
- Larger centers may have improved practices, knowledge and resources

Group B > 25 patients

Afolalu, PDI 2009


Regional Variation in Rates of Transfer to HD


Adjusted for age, race, sex, body mass index, end stage renal disease comorbidity index, primary diagnosis, PD modality (Automated PD vs. Continuous ambulatoryPD)

Perl unpublished data

International Variation in Rates of Technique Failure

Putting It All Together

WCN Milan: A Special Birthday

Objectives

Understand the reasons for discontinuation of PD therapy

Understand Trends in PD Technique Failure in Canada

Review patient, therapy and facility-specific risk factors for transfer to HD from PD

Introduce The Peritoneal Dialysis Outcomes Practice Patterns Study (PDOPPS) as a Means to Recognize Modifiable Causes of Peritoneal Dialysis Technique Failure

Design and Implementation

PDOPPS – Scientific Approach

- <u>Describe variation in practice</u> and monitor trends by following nationally representative samples of peritoneal dialysis facilities
- 2. <u>Identify best practices</u> by analyzing variations in practice and outcomes
- 3. <u>Translate</u> (communicate) key findings to improve clinical care

 The primary scientific goal of PDOPPS is to identify optimal practices to maximise time on PD treatment, without compromising patient survival and morbidity

Standardizing Data Definitions: Causes of Switch to HD

Level 1	Level 2			
	Acute severe			
	Refractory			
Infection related	Relapsing			
Intection related	Recurrent			
	Exit site infection only			
	Tunnel infection			
	Fibrin			
	Omental wrap			
Catheter related	Adhesions			
problems	Catheter misplaced			
	Cause unclear			
	Cuff extrusion			
	Catheter fell out			
	Inadequate clearance - defined by either Kt/V or creatinine			
	Inadequate clearance - phosphate clearance			
Problems with	Uraemic symptoms/poor nutrition			
aalutahuatar	Loss of RRF			
solute/water	Patient size			
clearance	UF failure - PET defined			
	Unable to remove excess body water			
	Unwillingness to prescribe more dialysate glucose to achieve sufficient UF			
	Lambie et al, ASN abrees fluid removal			

Standardizing Data Definitions: Causes of Switch to HD

Level 1	Level 2
Peritoneal leaks/hernia	Scrotal oedema Pleuro-peritoneal leak Abdominal wall Elsewhere Inguinal Peri-umbilical Elsewhere
Psychosocial/medical	Patient choice/"burn out" Carer choice/"burn out" Change in circumstance (e.g. death of carer, change in job etc) Severe Depression Physical incapacity Cognitive impairment
Risk of, or diagnosis of, Encapsulating peritoneal sclerosis (EPS)	Diagnosed EPS Time on PD GI symptoms but not formally diagnosed with EPS
Other	Haemoperitoneum Intra-abdominal pathology Other reason not included elsewhere

PDOPPS: Initial Countries

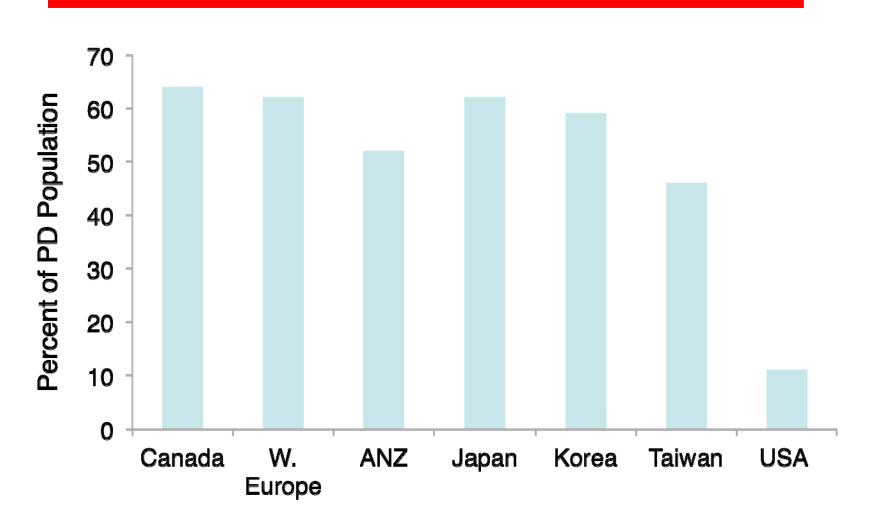
- First wave (2013):
 - US
 - UK
 - Canada
 - Japan
- Anticipate other countries soon:
 Investigators seeking funding locally

PDOPPS: Procedures & Data

- Sampling
 - Facilities National samples of PD facilities (with ≥15 patients), by stratified random sampling
 - Patients Samples of prevalent and incident* patients
- 3000+ patients
- Follow for 3+ years, including ≥4 mos. after permanent transition to HD
- Detailed clinical data, as well as patient and physician/nurse surveys

PDOPPS: Primary and Secondary Outcomes

- Primary Outcome: All Cause PD Technique Failure
 - Secondary Outcomes:
 - •All-cause mortality
 - •Cause specific PD technique failure:
 - Inadequate clearance
 - Infection-related
 - Psychosocial-related
 - Catheter-related*
 - Mechanical-related*


Secondary Outcomes:

- •PD related complications:
 - Hospitalizations
 - PD-related infections
 - Residual kidney function decline/anuria
 - PD access intervention
- •Patient-reported outcomes (PRO)
- •Clinical/laboratory measures:
 - Peritoneal membrane function: transport Status, UF capacity
 - Metabolic/inflammatory: Lipids, HbA1C, CRP

PDOPPS: ISPD Work Groups

- Infection: Prevention and Management
- PD catheter Access and function
- Clinical application of PD therapy
- Dialysis Prescription and Fluid Management
- Patient Support
- Patient training and Education

Icodextrin: Variability In Absolute Use by Country

Source: Baxter Healthcare: previous 18 months

Impact of Icodextrin Use on PD Technique Survival: PDOPPS Proposed Analysis

Hypothesis:

Because glucose exposure appears to contribute to peritoneal membrane changes,* the use of icodextrin early in PD therapy will reduce the risk of all-cause PD technique failure

Exposure:

Facility incident use of icodextrin: -early use of icodextrin among incident patients within the first 6 months of PD therapy

Outcome:

Primary:

-All cause technique failure Secondary:

-Technique failure due to inadequate ultrafiltration and dialysis inadequacy -Mortality

Adjustments:

- -demographics
- -comorbidities
- biochemistry
- -membrane function
- --residual kidney function
- modality (APD / CAPD)
- -low GDP solution use
- -Glucose exposure
- Facility characteristics

Summary (I)

- Causes of technique failure variable and poorly understood and variability captured across registries
- Likely that multiple causes in any given patient with psychosocial causes under appreciated
- Little change in technique survival in Canada in the last 15 years with the exception of patients > 65

Summary (II)

- Complex interplay between facility, patient and therapy characteristics that lead to risk of transfer to HD
- Need to better understand the impact of each and modifiable practices on the risk of transfer to HD
- PDOPPS: an international research program to understand modifiable causes of PD technique failure

Thank you

P-DOPPS Steering Committee:

- Simon Davies
- David Johnson
- •Heidiko Kawanishi
- •Frank Maddux (USA)
- •Jeffrey Perl
- •Ronald Pisoni
- •Fritz Port
- •Sarah Prichard
- Bruce Robinson

ISPD: Workgroup Leaders

David Johnson (AU)
Raj Mehrotra (USA)
Fred Finklestein (USA)
Ana Figuerriredo (Brazil)
Simon Davies (UK)
Angela Wang (HK)
Martin Wilkie (UK)

St. Michael's

Inspired Care. Inspiring Science.

Canadian P-DOPPS Team

- Arsh Jain
- Vanita Jassal
- •Brendan Mcormick
- Sharon Nessim
- Mathew Oliver
- •Jeffrey Perl
- Rob Quinn
- Manish Sood

Industry/Country Sponsors

- •Baxter Healthcare Int.
- Fresenius USA
- •Japanese Society of PD

