ULTRAFILTRATION FAILURE WESTERN CANADA PD DAYS

JOANNE MIRIAM BARGMAN MD, FRCPC
DIRECTOR, PERITONEAL DIALYSIS PROGRAM
UNIVERSITY HEALTH NETWORK, TORONTO

OUTLINE/OBJECTIVES

- Definition and causes of ultrafiltration failure (UFF)
- Risks associated with inadequate ultrafiltration and persistent volume overload
- Early versus late ultrafiltration failure
- How to maintain normal volume status in the face of UFF

NOT TO GET TOO PHILOSOPHICAL, BUT...

HOW DO YOU DEFINE ULTRAFILTRATION FAILURE?

- fluid removal doesn't keep up with fluid intake?
- so is "fluid overload" the same thing as ultrafiltration failure?
- some people assume that ultrafiltration failure means peritoneal membrane failure
 - not the same thing
 - peritoneal membrane failure is just one cause of ultrafiltration failure
 - example: someone ultrafilters 1000 ml/day, but takes a high salt diet and copious fluids, and is edematous
 - is this ultrafiltration "failure"?

DEFINITION: ULTRAFILTRATION FAILURE

CAUSES OF FLUID OVERLOAD

- congestive heart failure
- excessive salt and water intake
- decline of residual kidney salt and water excretion
- reluctance to use more hypertonic dialysis fluid or icodextrin
- mechanical problems with the dialysis
- **true peritoneal membrane failure**

Dynamics of Fluid Balance in the Dialysis Patient

Dynamics of Fluid Balance in the Dialysis Patient

VOLUME OVERLOAD - INTAKE

- excessive salt and water consumption
 - PD has often been "advertised" as allowing a more liberal dietary intake
 - patients with high salt intake are protected from volume overload while they have residual renal function (RRF)
 - once urine volume diminishes, patient may develop fluid overload

Dynamics of Fluid Balance in the Dialysis Patient

The Association of Residual Renal Function, but Not Dose of PD, with Survival

Table 5. Association of Weekly Peritoneal (Kp_{or}) and Residual Renal (Kr_{or}) Creatinine Clearance With Odds of Death: Three Logistic Models

Variable	Kp _{er} Only (N = 673)			Kr _{er} Only (N = 559)			Kpr _{er} (N = 443)		
	χ^2	ρ	OR	x²	Ρ	OR	χ^2	Р	OR
Age (yr)	30.2	< 0.001	1.046	26.8	< 0.001	1.054	13.2	< 0.001	1.042
Sex (male)	1.7	NS	0.750	2.1	NS	0.691	1.7	NS	0.689
Race (nonwhite)	2.5	NS	1.512	3.8	0.050	1.833	2.8	0.092	1.881
Diabetes (no)	11	< 0.001	2.023	12.0	< 0.001	2.431	14.4	< 0.001	2.991
Kp _{cr} (L/wk)	1	NS	1.009				0.5	NS	1.008
Kr _{cr} (mL/min)				12.7	< 0.001	0.876	8.9	0.003	0.887

Peritoneal clearance

Renal clearance

Diaz-Buxo et al. Am J Kidney Dis 1999

The CANUSA Study: Renal vs Peritoneal Contribution to Mortality

Variable Relative Mortality Risk

Peritoneal CrCl I.00

Renal GFR(per 5L/wk) 0.88

Urine volume (per 250 ml) 0.64

Preservation of Residual Renal Function

Avoid nephrotoxic drugs

- NSAID's and especially COX-2 inhibitors
 - most aches and pains are non-inflammatory anyway, and can be managed by acetaminophen
- prolonged courses of aminoglycosides
- avoid fibrates if possible (my opinion)

Preservation of Residual Renal Function

Avoid intravenous dye studies

- consider necessity of the study
- can alternative to dye be used?
 - Dobutamine stress echo
- use iso-osmolar, nonionic dye, keep patient hydrated
- use N-Acetyl Cystine (my opinion)
- minimize volume of dye
 - eg don't image the left ventricle

Preservation of Residual Renal Function

 ACE inhibitors and angiotensin receptor blockers (ARB's) can slow down deterioration of renal function

Preservation of Residual Kidney Function with Angiotensin Receptor Blockers

Preservation of Residual Kidney Function with ACE Inhibition

PRESERVATION OF RESIDUAL KIDNEY FUNCTION BY ACE INHIBITORS AND ANGIOTENSIN RECEPTOR BLOCKERS

preservation of I ml/min – so what?

- most studies show that each ml/min of residual GFR associated with 15 25% reduction in annual mortality
- this is theoretically as life-prolonging as results seen in the ACE-I, statin or spironolactone trials for heart disease

Preservation of Residual Kidney Function: What About Diuretics?

- diuretics increase renal salt and water excretion
- they do not acutely change GFR
- no evidence over longer term that they either improve or worsen GFR
- after I year: preservation of urine volume
- but this is important for management of volume status

Effect of Daily Furosemide on Urine Volume: Results After 1 Year

OTHER WAYS TO PRESERVE RESIDUAL KIDNEY FUNCTION

- Continue immunosuppression in "failed" renal transplants
 - Davies Perit Dial Int 2001
 - Jassal et al Am J Kidney Dis 2002

Dynamics of Fluid Balance in the Dialysis Patient

"ULTRAFILTRATION FAILURE"

Use of the wrong type of PD fluid

- usually this means failure to account for the long dwell
- reluctance to use hypertonic fluid because of perception that it will hurt the peritoneal membrane

Temporal Profiles of APD and CAPD

Ultrafiltration Profiles of Dextrose-Based Solutions

ULTRAFILTRATION FAILURE – OTHER CAUSES

- failure of the peritoneal membrane to respond to UF conditions (true membrane failure)
- mechanical failure of dialysis procedure

FAILURE OF THE PERITONEAL MEMBRANE

Definition: Inability to maintain volume homeostasis despite the use of hypertonic dialysate solutions (3 or more daily)

or

Failure to ultrafilter > 400 ml using a
 4.25% bag for 4 hours (the Rule of 4's)

TRUE PERITONEAL MEMBRANE FAILURE

- on PET test, D/P creatinine is high
- these high transporters have rapid absorption of glucose across peritoneal membrane
- rapid dissipation of osmotic gradient
- poor ultrafiltration

MECHANICAL FAILURE OF THE DIALYSIS PROCEDURE

- diminished effluent return because the dialysis fluid is leaving the peritoneal cavity
- PET test is unchanged

MECHANICAL FAILURE OF THE DIALYSIS PROCEDURE

OUTLINE/OBJECTIVES

- Definition and causes of ultrafiltration failure (UFF)
- Risks associated with inadequate ultrafiltration and persistent volume overload
- Early versus late ultrafiltration failure
- How to maintain normal volume status in the face of UFF

PD ULTRAFILTRATION AND SURVIVAL

Daily UF volume

Ates, et al. Kidney Int. 2001;60:767-776.

PD NA+ REMOVAL AND SURVIVAL

Daily Na+ removal

Ates, et al. Kidney Int. 2001;60:767-776.

THE IMPORTANCE OF ULTRAFILTRATION: THE EAPOS STUDY

- multi-centre study in Europe examining predictors of outcome in anuric APD patients
- small solute clearance parameters did not predict survival
- baseline ultrafiltration volume significantly predicted survival
- time-dependent ultrafiltration volume was also of borderline statistical significance

FLUID REMOVAL AND SURVIVAL IN EAPOS

PREDICTORS OF SURVIVAL IN ANURIC PD PATIENTS

- recent study of anuric PD patients in Shanghai
- similar to EAPOS, ultrafiltration volume was an important predictor of survival

Table 4. Multivariate Cox regression analysis showing independent predictors of mortality in 86 anuric PD patients followed up for a median of 25.3 months (range, 6 to 54 months)

	RR.	95% CI	P-value
Age (1 year)	1.064	1.019-1.111	0.005
Serum albumin (1 g/L) UF(t) (100 ml/24 h)	0.850 0.800	0.744-0.973 0.709-0.901	0.018

THE IMPORTANCE OF SODIUM AND WATER REMOVAL

- evidence suggests that ultrafiltration volume and euvolemia are important for survival
- this makes sense physiologically, given risks of chronic volume overload
 - LVH
 - increased sympathetic tone
 - congestive heart failure

OUTLINE/OBJECTIVES

- Definition and causes of ultrafiltration failure (UFF)
- Risks associated with inadequate ultrafiltration and persistent volume overload
- Early versus late peritoneal membrane failure
- How to maintain normal volume status in the face of UFF

Early vs Late Ultrafiltration (Membrane) Failure

- some patients have problems with ultrafiltration at the start of PD
- other patients develop it over the course of PD

Figure 1 — Frequency distribution of the number of patients with (black boxes) and without (open boxes) ultrafiltration failure and the duration of peritoneal dialysis (PD; months).

EARLY VS LATE ULTRAFILTRATION FAILURE

- early UF failure is probably a marker of inflammation
- these patients are rapid transporters from the beginning
- late UF failure a marker of a change in the structure of the peritoneal membrane

WHAT HAPPENS TO THE PERITONEAL MEMBRANE OVER TIME?

- new blood vessel formation
 - this makes the patient a more rapid transporter
- submesothelial fibrosis
 - this leads to diminished osmotic conductance

Slides courtesy of Peter Margetts

LONG-TERM CHANGES IN THE PERITONEAL MEMBRANE

Devuyst O et al. JASN 2010;21:1077-1085

LONG-TERM CHANGES IN THE PERITONEAL MEMBRANE: RESULTS

- acquisition of rapid transport status
 - reduction in ultrafiltration
- diminished osmotic conductance
 - reduced ultrafiltration for any given osmotic gradient

WHAT IS OSMOTIC CONDUCTANCE?

WHAT IS OSMOTIC CONDUCTANCE?

LOW OSMOTIC CONDUCTANCE: FOR A GIVEN OSMOTIC GRADIENT, LESS WATER MOVEMENT

Transport Status and Ultrafiltration

Long-Term PD Patients: Transport Status and Ultrafiltration

LATE ULTRAFILTRATION FAILURE: THE DOUBLE WHAMMY!

- there is a tendency for some patients to become more rapid transporters over time
- in addition, for whatever osmotic gradient there is, less ultrafiltration occurs

OUTLINE/OBJECTIVES

- Definition and causes of ultrafiltration failure (UFF)
- o Risks associated with inadequate ultrafiltration and persistent volume overload
- o Early versus late peritoneal membrane failure
- How to maintain normal volume status in the face of UFF

MANAGEMENT OF RAPID TRANSPORTERS (I)

- reinforce salt and water restriction
- use more hypertonic dialysate
- icodextrin can be quite helpful here (as effective in high transporters as other transport types)

HYPERTONIC DEXTROSE-BASED SOLUTIONS

hypertonic dialysate will result in more UF and convective removal of solute

USE OF HYPERTONIC DIALYSIS SOLUTIONS

- there is a metabolic "cost" to this:
 - to the patient (calories, lipids, etc)
 - maybe to the peritoneal membrane

ICODEXTRIN: A DIFFERENT APPROACH TO ULTRAFILTRATION

- macromolecules that are absorbed more slowly from the peritoneal cavity
- induces water transport across small intercellular pores
- works more efficiently in rapid transporters: enhances UF with increased vascular surface area (more pores)

REMEMBER THE HARE AND THE TORTOISE?

- the hare ran quickly but soon grew tired
- the tortoise, slow and steady, won the race

REMEMBER THE HARE AND THE TORTOISE?

- the hare ran quickly but soon grew tired
- the tortoise, slow and steady, won the race

SUSTAINED ULTRAFILTRATION: ICODEXTRINVS DEXTROSE

Mujais S, Vonesh E. Kidney Int. 2002;62(suppl 81):S17-S22.

ICODEXTRIN WORKS WELL IN ALLTRANSPORT TYPES

Mujais S, Vonesh E. Kidney Int. 2002;62(suppl 81):S17-S22.

ULTRAFILTRATION EFFICIENCY RATIO: THE "METABOLIC COST" OF UF

 Icodextrin leads to more ultrafiltration per gram of carbohydrate absorbed
 (expressed as mls ultrafiltered / g carbohydrate absorbed

mls/g

BUT ICODEXTRIN HAS A CALORIC LOAD TOO

amount of calories
 absorbed from
 icodextrin ~ number of
 calories absorbed from
 a 2.5% dextrose
 solution

BUT ICODEXTRIN HAS A CALORIC LOAD TOO

amount of calories
 absorbed from
 icodextrin ~ number of
 calories absorbed from
 a 2.5% dextrose
 solution

USE OF ICODEXTRIN TO ACHIEVE EUVOLEMIA

- more costly (but cheaper than changing to HD)
- 2 icodextrins/day (off-label!) associated with more UF but higher blood concentrations of metabolites

SHORTENED DWELL TIMES AND/OR SWITCH TO APD

- shortened dwell times allow for less dissipation of the glucose osmotic gradient
- this will lead to increased ultrafiltration and less opportunity for reabsorption
- if dwell times too short, water may be ultrafiltered faster than sodium is removed
- this sodium sieving can impair salt and water removal
- and you still have to deal with the long(er) dwell!

SODIUM REMOVAL IN PATIENTS TRANSFERRED FROM CAPD TO APD

(Rodriguez-Carmona 2002)

SHORTER DWELLTIME AND/OR CONVERSION TO APD

- in CAPD this necessitates more frequent exchanges and risk of burnout
- APD is not a "magic bullet"!
 - risk of sodium sieving
 - absorption during the long day dwell
- in anuric patients dry abdomen should be avoided in both CAPD and APD

WHAT ABOUT THE LONG DWELL?

- Luse icodextrin or a more hypertonic dialysate (e.g. 2.5%)
- 2. break up the long dwell
 - day dry (only if there is a lot of RRF)
 - "mid-day" exchange in APD
 - drain out day exchange in APD after a few hours

MANAGEMENT OF RAPID TRANSPORTERS (II)

- "push" residual urine output (diuretics)
- APD with dry day, or drain out last fill at lunch (if enough RRF)
- once anuric, watch closely for volume overload
- consider transfer to hemodialysis if patient is chronically overloaded (start talking about fistula placement with the patient)

CAPD

1.5%

2.5%

1.5%

Icodextrin

CAPD

1.5%

2.5%

1.5%

2.5%

Icodextrin

MY OPINION: WHAT WORKS FOR UF

CAPD -	1.5%	2.5%		1.5%	lcodextrin lcodextrin			3
		1.5% 2.5% 1.5%		2.5%				
APD	lcodextrin				2.5%	2.5%	2.5%	2.5%
NIPD	(dry)				2.5%	1.5%	1.5%	2.5%

MY OPINION: WHAT WORKS FOR UF

CAPD

1.5%

2.5%

1.5%

Icodextrin

CAPD

1.5%

2.5%

1.5%

2.5%

Icodextrin

APD

Icodextrin

2.5%

2.5% 2.5%

2.5%

NIPD

(dry)

2.5% 1.5%

1.5% 2.5%

and maybe...

APD

Icodextrin

Icodextrin

2.5% 1.5% 2.5%

SUMMARY

- Attainment of normal volume status is important for the well-being of our dialysis patients
- There is a differential diagnosis in the volume-overloaded PD patient don't assume it is membrane failure
- Early versus late ultrafiltration failure have different causes
- Management includes dietary sodium restriction, pushing urine output with diuretics, and changes to the PD prescription
- Consider a transition to hemodialysis if the patient remains chronically volume overloaded despite these interventions