# Dialyzers in the 21<sup>st</sup> Century The Basics

### Dr. Mercedeh Kiaii, MD, FRCPC St. Paul's Hospital, Vancouver, BC



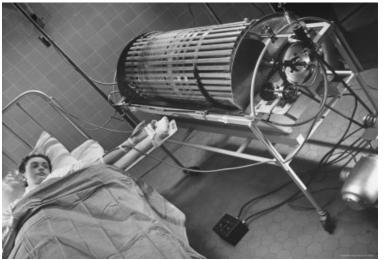


### Overview

- Evolution of Dialyzers
- Basic Components of Dialyzers
  - Types of membranes
  - Efficiency and Flux
  - Sterilization
- Dialyzer reactions
  - Local Experience of Significant Thrombocytopenia Related to Dialyzer Use

### **EVOLUTION OF DIALYZERS**

# History of Dialyzers


#### • 1924: Haas Dialyzer

- Tubular Device
- Cellulose trinitrate

### • 1944: Kolff Dialyzer

- Rotating dialyzer
- Wooden drum
- Celluphane tube





# History of Dialyzers

- 1956: Kolff Dialyzer
  - Coil dialyzer



#### • 1960: Kiil Dialyzer

- Plate dialyzer
- Cellulosic flat sheet

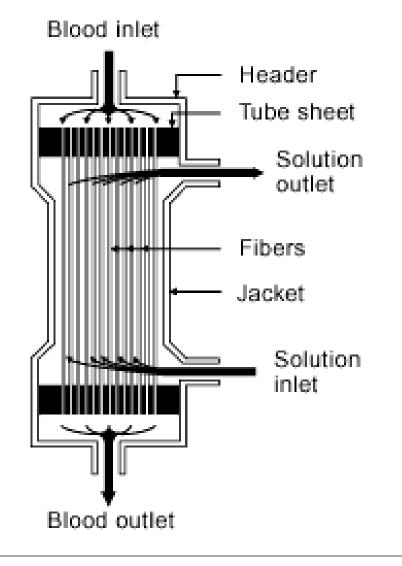


# History of Dialyzers

#### • 1966: Hollow Fiber Dialyzer

Cellulose Acetate

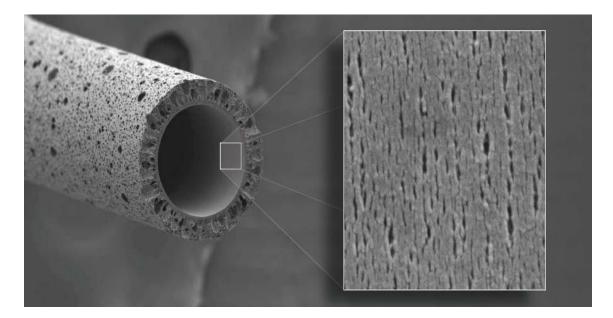
#### • 1969: First Synthetic Membrane


• Polyacrylonitrile (AN-69)



# The Hollow Fiber Dialyzer

#### Components


- Membrane
  - Hollow fibers
- Potting compound
- Header
- Housing



### **BASIC DIALYZER COMPONENTS**

# The Dialyzer Membrane

- Membrane material
- Efficiency
- Pore size (Ultrafiltration coefficient = Flux)
- Sterilization



# **Dialyzer Membrane Material**

### Unmodified Cellulose (Cuprophane)

- Polysaccharide based obtained from pressed cotton
- Chains of glucosan rings with abundant free hyroxyl groups

#### Substituted cellulose

- Cellulose Acetate: acetate binds to the hydroxyl groups
- Diacetate, triacetate

# **Dialyzer Membrane Material**

### Cellulosynthetic

 Addition of a synthetic material such as diethylaminoethyl = Hemophane

### Synthetic membranes

- Polysulfone
- Polyacrylonitrile (PAN)
- Polycarbonate
- Polyamide
- Polymethylmethacrylate (PMMA)

### Membrane Biocompatibility

#### Biocompatible membranes

- Less activation of the immune system and inflammatory response
- Substituted cellulose and the synthetic membranes essentially similar in biocompatibility
  - Some patients can have sensitivity to certain membrane material

### Polysulfone membranes

- High physical strength & chemical resistance
- Heat and radiation sterilization possible
- Often combined with PVP to increase hydrophylicity
- Ability to retain endotoxins

### Polyethersulfone membranes

- Advanced fiber spinning process
- Creates larger, uniformly sized and densely distributed pores
- Achieve better middle molecule clearance with minimal albumin loss

### PAN derived membranes

#### • AN-69 membranes:

- Polymer of PAN and methanllylsulfonate
- Negatively charged surface can activate bradykinins and cause dialyzer reactions
  - May be aggravated by use of ACEI

#### • AN-69 ST membranes:

- Coated with polycationic polymer to decrease reactions
- Heparin (negatively charged) can bind to the membrane

# Efficiency

- Efficiency related to:
  - Membrane size (Surface Area)
  - Porosity
  - Thickness
  - Internal diameter of the fibers
    - Reduces the resistance of the more static blood layers
  - Design
    - Wavelike or crimped vs straight fibers

### Flux

- Flux: related to Kuf (Coefficient of ultrafiltration)
  - volume of fluid (ml/hr) transferred across the membrane per mmHg of pressure gradient
  - High flux dialyzers
    - Kuf > 15 ml/mmhg or B2M clearance > 20 ml/min

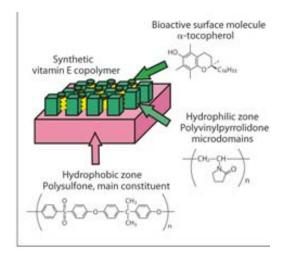
#### Advantages of high flux:

• Improve middle molecule clearance

### • Disadvantages of high flux:

- Errors in TMP can cause large UF
- Backfiltration

### **Evidence for Flux**


- Cochrane review of RCT's could not determine overall efficacy of high flux dialysis
  - Concluded may reduce CV mortality
- HEMO study
  - Decreased CV mortality in pts on HD > 3.7 yrs
- MPO study
  - Increased survival in pts with albumin < 40 and in diabetics

# High Cut-Off Membranes

- Higher molecular weight cut-off ~ 65KDa
- Better B2M clearance compared to high flux dialyzers
- Increase clearance of free serum light chains:
  - Potential use in treatment of patients with multiple myeloma
- Increase Albumin clearance

# Vitamin E coated dialyzers

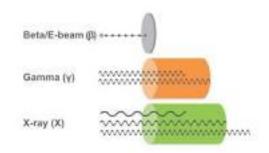




- Cellulose or PS backbone
- Coated with vitamin E
   ( α tocopherol)
  - Reduce reactive oxygen species
- Decrease inflammatory markers
- No survival benefit yet

### **Sterilization Techniques**

- Advances in Sterilization
  - Chemical
  - Heat
  - Radiation
    - Gamma-radiation
    - Beta-radiation (electron-beam)


### **Overview of Sterilization Techniques**

|                   | Microbiological<br>Efficacy | Effect on Dialyzer<br>Material                               | Release of<br>sterilization<br>byproduct                                         | Cost |
|-------------------|-----------------------------|--------------------------------------------------------------|----------------------------------------------------------------------------------|------|
| Chemical<br>(ETO) | High                        | Very low<br>mechanical stress<br>No thermal stress           | Residual ETO<br>from potting<br>compound                                         | Low  |
| Heat              | High                        | High thermal<br>stress. Not<br>suitable for all<br>membranes | None                                                                             | High |
| Radiation         | High                        | Intermediate<br>material stress                              | Cytotoxic<br>compounds from<br>some dialyzers &<br>from some potting<br>compunds | High |

### **Radiation Sterilization**

### Gamma Radiation

- Use radioactive isotope
- Usually cobalt 60
- Very penetrating



#### Beta Radiation (electron-beam)

- Stream of high energy electrons accelerated by means of a linear accelerator
- Limited depth of penetration
- More focused and precisely delivered
- Exposure time is shorter

# **Dialyzer Reactions**

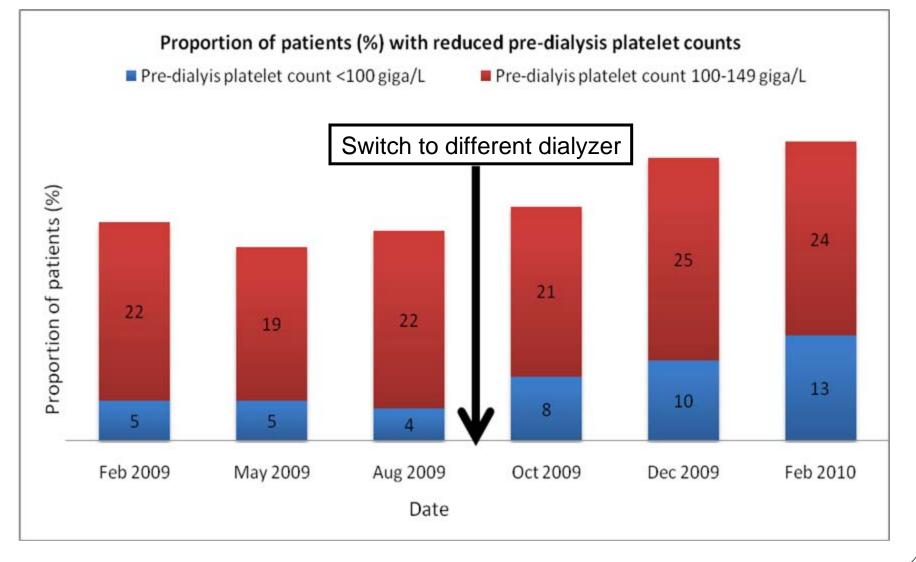
### • Type A

- IgE mediated, hypersensitivity reactions
- Often severe and usually associated with exposure to an antigen (most common ETO)

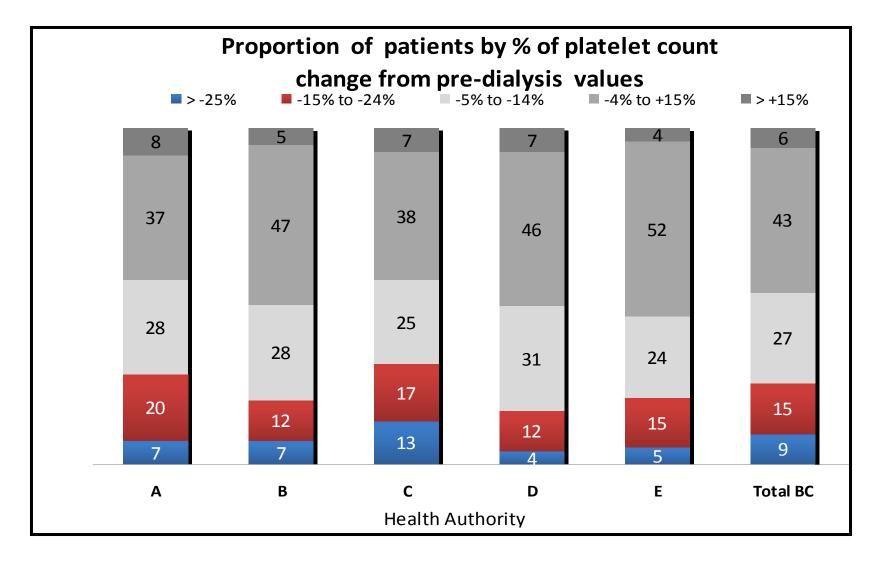
### • Type B

- Complement mediated, less severe
- Can result in changes in count or function of the blood cell lines
- Can result in neutropenia followed by rebound leukocytosis

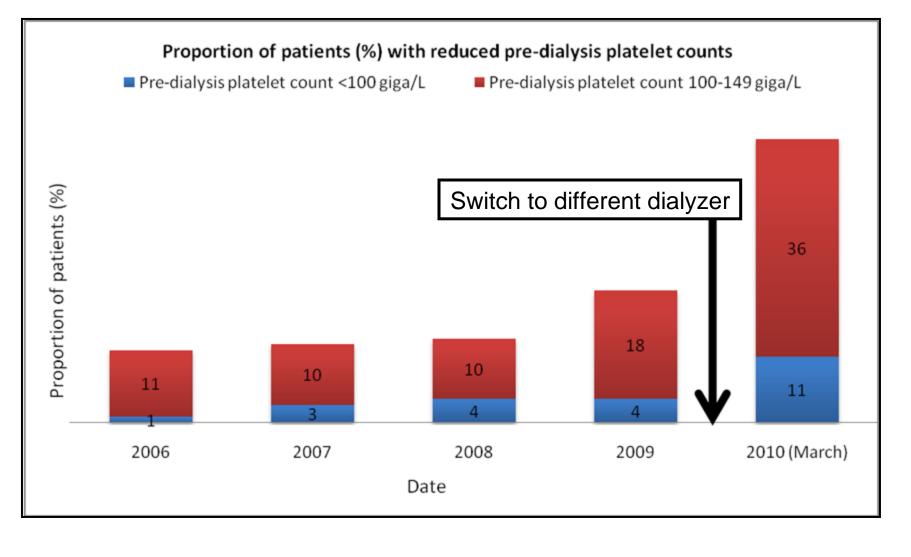
## **Dialyzer Reactions**


#### • Protein-Membrane Interactions:

- Dialysis membrane and the coagulation proteins which can result in binding of fibrinogen, platelet adhesion and thrombocytopenia
- Platelet count can drop during initial part of dialysis but usually rebound to pre-dialysis levels at the end of the session
- Overall drop of greater than 7-9% is unusual with biocompatible membranes


#### LOCAL CANADIAN EXPERIENCE

BRITISH COLUMBIA AND CALGARY, CANADA

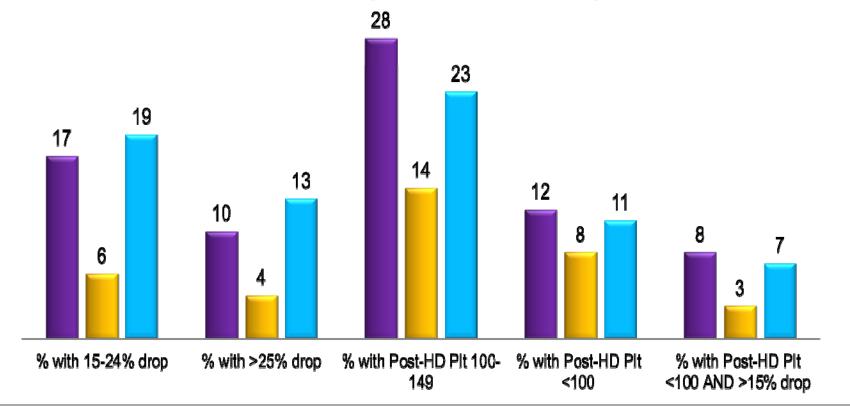

# SPH Dialysis Unit Review



# BC-Wide Provincial Investigation (broken down by health authority)

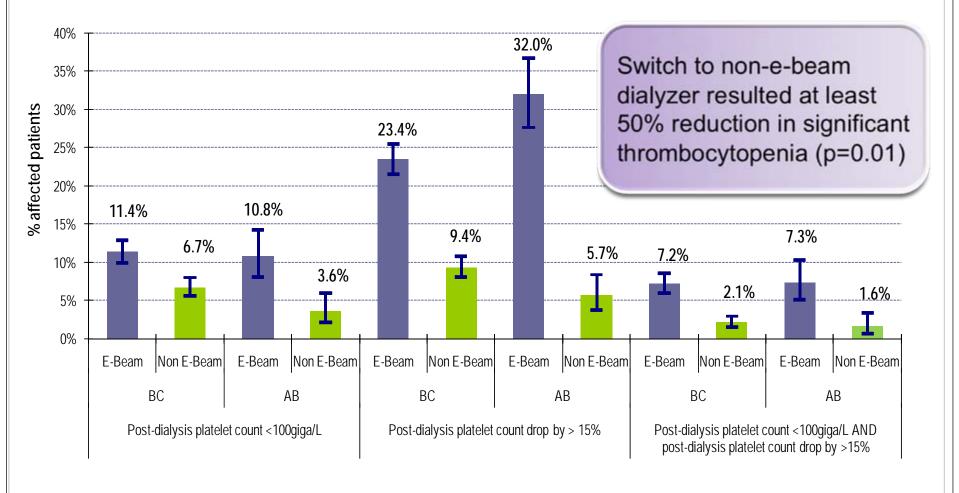


# Calgary Experience




### Prevalence of Significant Thrombocytopenia in HD Population

BC Patients Polysulfone E-beamed Dialyzers


Other Dialyzers

AB Patients Polysulfone E-Beamed Dialyzer



### Impact of Intervention

Percentage of patients with significant thrombocytopenia before and after switch to non e-beam sterilized dialyzer



### **CHOOSING A DIALYZER**

### **Dialyzer Specifications**

#### Membrane material

- Polysulfone: Fresenius, Asahi
- Poly(aryl)ethersulfone: Gambro (Revaclear), Baxter (Xenium)
- AN-69-ST: Gambro (Nephral ST)
- Cellulose Triacetate: Baxter (Exeltra)
- Clearance (Qb: 200-400 ml/min and Qd: 500 ml/min)
  - Urea, creatinine, vitamin B12, B2M

# **Dialyzer Specifications**

• Kuf (Flux): High flux standard, required for HDF

### • Sterilization:

Steam and Gamma radiation preferred

### • Other:

- Heparin requirement
- Coating of dialyzer
  - Vitamin E, Heparin grafted (Evodial)
- Wet vs Dry

### Cost

# Summary

- Most dialyzers currently available are high efficiency & have similar clearance performance
- High flux dialyzers have some advantages and required for delivering hemodiafiltration
- Every unit must have options for patients with possible sensitivity to certain dialyzer membrane
  Have choice of two different membrane materialf
- Current preferred modes of sterilization are steam and gamma radiation

# **QUESTIONS / DISCUSSION**