

From Rocks to Dust:

Nephrolithiasis &

the Kidney Stone Diet

Presented by:

Dr.Caroline Stigant, Nephrologist

Ruby Bassi, Dietitian

Who is our Audience Today?

- Dietitians
- Nurses
- Pharmacists
- Physicians
- Social Workers

Do you care for individuals with nephrolithiasis...

- Daily
- Weekly
- Monthly
- <Monthly</p>
- Never

Pre-test 1

- All of the following are effective treatments for kidney stone except:
 - Low animal protein diet
 - Low sodium diet
 - Citrate supplementation
 - Dietary calcium restriction
 - Increased fluid intake

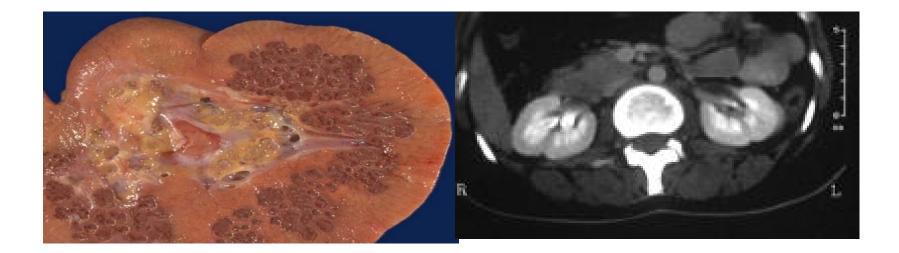
Pre-test 2

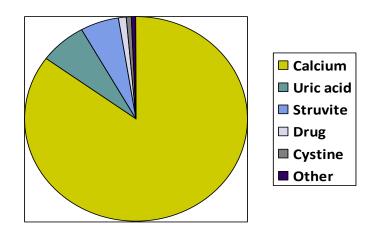
- What is the most common type of kidney stone?
 - Calcium oxalate
 - Uric acid
 - Drug
 - Struvite
 - Cystine

NEPHROLITHIASIS – A PAINFUL PROBLEM!

- Affects approx 10% of adults
 - Slight male predominance
- Incidence varies geographically
- Approx 50% have one or more recurrence at 10 years
 - Detailed evaluation generally performed for recurrent stone formers
- Can cause significant morbidity
- Rare cause of end-stage kidney failure

Pathophysiology


- Supersaturation
- Stasis
- Structural abnormality



Medullary Sponge Kidney

Types of Stones

- Calcium
 - Calcium oxalate
 - Calcium phosphate
- Uric acid
- Struvite 'staghorn'
 - Magnesium ammonium phosphate
- Drug-related
 - Creation of metabolic environment favouring stone formation
 - Crystallization of drug itself when supersaturated in urine
- Rare Stone Disorders:
 - APRT Deficiency, Dent Disease, Cystinuria, Primary hyperoxaluria

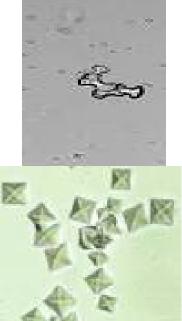
How Can I Tell What Type of Stone My Patient Has?

• History

- Age, comorbidities, medications, family history, occupation / environment, prior kidney or GI surgery
- Physical
 - Urinalysis
 - presence of crystals
- Lab testing
 - Serum: creatinine, bicarbonate, calcium, PTH, glucose/HgA1c, uric acid
 - Urine (24 hr): calcium, uric acid, oxalate, sodium, citrate
 - Urine pH: uric acid crystals form in acidic uric, calcium phosphate crystals form in alkaline urine, urine is alkaline with struvite stones

• Imaging:

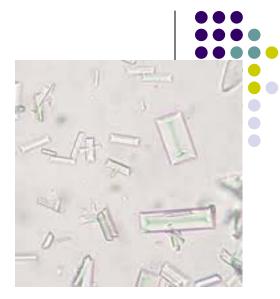
- Radiolucent (uric acid stones) vs opaque (most other stones)
- ? Nephrocalcinosis
- Stone Analysis


Selected Medications

- Change urine pH or composition:
 - Vitamin C
 - Vitamin D
 - Calcium (ie. CaCO3)
 - Diuretics: carbonic anhydrase inhibitors, loop diuretics
- Drug precipitates:
 - Antimicrobials: acyclovir, amoxicillin, ampicillin, ceftriaxone, ciprofloxacin, sulfamethoxazole
 - Protease inhibitors: indinavir
 - Guaifenesin
 - Triamterene
 - Methotrexate

Calcium Oxalate

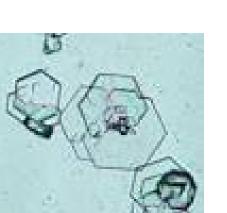
- Most common (80-85%)
- Presumed diagnosis unless atypical features
- Higher incidence:
 - Post (partial) bowel resection
 - High dose Vitamin C
 - Family history
- Hypercalciuria not necessary
- Hyperoxaluria not necessary


Uric Acid Stones

- Reasonably common
- Risk factors:
 - Gout
 - Chronic diarrhea
 - Obesity
 - Metabolic syndrome / DM
 - Malignancy
- Not seen on plain X-ray
- Hyperuricosuria common

Struvite Stones

- Magnesium ammonium phosphate + calcium carbonate
- Formed in infected upper urinary tract:
 - Females, neurogenic bladder, urinary diversion
 - Can grow quickly so often present late
 - UTI symptoms, flank pain, gross hematuria
 - pH > 7
- Antibiotics and surgical removal required



Cystine Stones

- Cystinuria 1/7000 live births
 - Reduced renal absorption cystine (plus ornithine, lysine, arginine)
- +/- Family history
- Often presents in childhood
- Can form staghorn calculi
- Less radiopaque than calcium stones

What proven treatments are there?

- Increasing fluid intake
- Thiazide diuretic (reduces urine calcium)
- Allopurinol (reduces urine uric acid)
- Citrate (raises urine citrate / raises urine pH)

Other Treatments

- Diet
- Oral calcium (oxalate binding)
- Disease-specific
 - ie. captopril or penicillamine for cystinuria
- Analgesia
- Alpha blockers (relax smooth muscle tone of ureters to help stone pass / relieve colic)
- Lithotripsy
- Surgical
 - Endoscopic
 - Percutaneous
 - Open
- MEDICAL THERAPY DOES NOT DISSOLVE STONES

Case 1 – Patient AS

- 34 F 4 year history of recurrent nephrolithiasis, onset with renal colic at age 26 when pregnant
 - Every 6 months, then monthly severe colic
 - Stone obstruction twice (9mm, 1.2cm); bilateral ureteric obstruction with urosepsis
 - Ureteric stents placed on multiple occasions
- No family history
- CT-KUB consistent with medullary sponge kidneys; multiple bilateral calculi up to 3 mm in size

AS - continued

- Normal serum biochemistry
- Stone analysis: calcium oxalate
- Urinalysis: pH 6.5, RBC 40-100/hpf
- 24 hr urine:
 - Volume 3.7 L
 - Calcium
 - Oxalate
 - Citrate
 - Sodium
 - Uric acid

5.2 (2.2-6.5 mmol/d) 344 (40-340 umol/d) 4.44 (0.7-4.9 mmol/d) 207 (40-220 mmol/d) 3.4 (1-3.8 mmol/d)

AS – follow up 3 years later...

• Therapy:

- HCTZ 12.5 mg po BID
- Potassium citrate 50 mEq po TID
- Prazosin 1 mg po OD
- Cipro 500 mg po OD
- Endoscopic stone extraction & laser lithotripsy x2
- Urine pH 8.5
- Urine volume still high, biochemistry still normal
- Right hydronephrosis with multiple impacted ureteric stones currently awaiting surgery

Case 2 - Patient WM

- 32 F of Chinese descent, presented with creatinine 106 on routine lab testing
 - U/S: nephrocalcinosis, bilateral hydronephrosis, cortical thinning
 - CT: staghorn calculi bilaterally, multiple intrarenal stones
- Extensive surgery / subsequent surgeries
- Pregnancy with nephrolithiasis complicating
- Urine amino acid electrophoresis: urine cystine excretion 4x normal
- Increased fluids, diet control, and K citrate

Onto nutrition therapy...

Agenda

- Types of stones
- Nutritional risk factors
- Nutritional assessment
- Evidence
- Challenges
- Post test

The Stones that Roll In...

- Most common: calcium oxalate & uric acid
- Struvite stone
- Clients can have various ones over time, i.e. calcium oxalate, uric acid

Nutritional Risk Factors

- Obesity
- Diabetes
- Gout
- Gastrointestinal complications

Nutritional Assessment

- Assess the 24 hour urinalysis
 - Urine volume, calcium, oxalate, sodium, citrate, uric acid, pH (if completed)
- Assess 3 day diet record
 - Fluid intake, salt, sugar, caffeine, protein, calcium, oxalate
- Assess vitamins/minerals/herbal remedies
 - Vitamin C dose?
 - Herbal remedies

Case Study: 55 year old female

MEAL	FOOD
Breakfast	-All-Bran cereal with 1/2C milk -Coffee -1 banana
Lunch	-1C canned soup-4 crackers with cheese
Dinner	-Frozen dinner -1C juice
Snacks:	-salted nuts, candy, chocolate, cookies
Fluid intakes:	Water: 750ml; Coffee: 2C; Juice: 1-2C

Case Study cont.

• She presents with the following 24 hour urinalysis:

LAB	VALUE	REFERENCE RANGE
Urine volume	1500 ml	
Calcium	3.4	1.0-7.0
Oxalate	1297	40-340
Citrate	0.8	1.0-6.0
Uric acid	2.4	1.5-4.5
Sodium	254	40-220

Analyzing the 24 hour urinalysis

- Urine volume = low
- Oxalate = elevated
- Citrate = low

• Sodium = elevated

Nutritional Concerns

MEAL	FOOD
Breakfast	- All-Bran cereal with 1/2C milk -Coffee -1 banana
Lunch	-1C canned soup -4 crackers with cheese
Dinner	- Frozen dinner -1C juice
Snacks:	- salted nuts, candy, chocolate, cookies, fruit
Fluid intakes:	Water: 750ml; Coffee: 2C; Juice: 1-2C

Nutritional Concerns cont.

- All bran cereal, nuts, chocolate \rightarrow Oxalate
- Canned soup, cheese, frozen dinner, salted nuts → Sodium
- Juice, candy \rightarrow Sugar
- Low fluid intake
- Inadequate calcium intake

Dietary Recommendations

- Increase fluid intakes: 2.5-3L (10-12C)
 - Includes: water, milk, juice, tea, & soup
- Limit high oxalate content food
- Monitor sodium
- Reduce refined sugars
- Citrate therapy
- Meet calcium requirements for age/gender

Case Study: 41 year old male

MEAL	FOOD
Breakfast	-2 slices bacon, 1 egg, 2 slices toast -Black tea
Lunch	-2 C mixed green salad with almonds and 1 C tuna
Dinner	-5 oz. steak, ½ mashed potatoes, ½ C asparagus
Snacks:	-nuts, fruit, black tea
Fluid intakes:	Water: 1500 ml; Black tea: 2C

Case study cont.

• He presents with the following 24 hour urinalysis:

LAB	VALUE	REFERENCE RANGE
Urine volume	1800 ml	
Oxalate	303	40-340
Citrate	2.5	1.0-6.0
Uric acid	6.0	1.5-4.5
Sodium	140	40-220

Analyzing the 24 hour urinalysis

- Urine volume = Low <2L
- Uric Acid = Elevated
- Sodium

Nutritional Concerns

MEAL	FOOD
Breakfast	-2 slices bacon, 1 egg, 2 slices toast -Black tea
Lunch	-2 C mixed green salad with almonds and 1 C tuna
Dinner	-5 oz. steak, ½ mashed potatoes, ½ C asparagus
Snacks:	-nuts, fruit, black tea
Fluid intakes:	Water: 1500 ml; Black tea: 2C

Nutritional Concerns cont.

- Bacon, egg, tuna, steak \rightarrow Uric acid
- Sodium intakes
- Calcium intakes

Dietary Recommendations

- Limit intake of meat & alternatives to 2-3 servings/day (1serving=2.5oz)
- Increase fluid 2.5L
- Limit sodium intakes
- Meet calcium requirements for age/gender

Evidence : Fluid Intake

- Low strength evidence that, compared to no treatment, increased fluid intake to maintain daily u/o of >2L/day significantly reduces risk of stones.
- High fluid intake (>2.5L/d) decreases risk for kidney stones in adults with no previous history

Evidence: Calcium

- Limited evidence shows that restricting calcium will increase stone formation
- Elevated calcium in urine is responsible for calcium containing stones
- Some evidence shows high intake of dietary calcium appears to decrease risk for symptomatic kidney stones

Evidence: Oxalate

- Limited evidence shows that lowering dietary oxalate will reduce risk of calcium oxalate stones
- Oxalate bioavailability varies in food although a food may be high in oxalate, its bioavailability may be low, i.e. swiss chard

Evidence: Protein

- Protein from animal sources increases the excretion of calcium, oxalate, and uric acid in urine.
- Limited evidence supports that high urine uric acid excretion increases the risk of calcium oxalate stones

Citrate Therapy

- May work to increase urinary citrate + pH, which reduces CaOx crystal formation
- Evidence does show increase of urinary citrate with citrate therapy alone
- More significant changes seen with K-Citrate
- K-Citrate + citrate therapy is more effective than citrate therapy alone

Challenges

- Individuals with:
 - Heart disease
 - Diabetes

Stone Cold Recommendations

- Suggest 2.5-3L fluids/day
- Limit high oxalate content foods
- Meet recommendations for calcium
- Monitor sodium intakes
- Enjoy 2-3 servings from meats & alternatives group

Post Test - 1

- What is the most common type of kidney stone?
 - Calcium oxalate
 - Uric acid
 - Drug
 - Struvite
 - Cystine

Post test - 2

- All of the following are effective treatments for kidney stone except:
 - Low protein diet
 - Low sodium diet
 - Citrate supplementation
 - Dietary calcium restriction
 - Increased fluid intake

Questions??

References

ABC's of Medical Manage of Stones (2nd Edition). Pearle, M., Preminger, G.M., Goldfarb, D.S., Griffith, D.P., Pak, C.Y.C.

Curhan, G.C., Willett, W.C., Speizer, F.E., Spiegelman, D, Stampfer, M.J. (1997). Comparison of dietary calcium with supplemental calcium and other nutrients as factors affecting the risk for kidney stones in woman. *Annals of Internal Medicine*, *126(7)*, 497-504.

Curhan, G.C., Taylor, E.N.(2008). 24-h uric acid excretion and the risk of kidney stones. Kidney International, 73(4),489-496.

Eisner, B.H., Eisenberg, M.L., Stoller, M.L. (2009). Impact of urine sodium on urine risk factors for calcium oxalate nephrolitiasis. *Journal of Urology*, *182(5)*,2330. Retreived from http://www.ncbi.nlm.nih.gov/pubmed/19758639

Fink, H.A., Wilt, T.J., Eidman, K.E., Garimella, P.S., MacDonald, R., Rutks, I.R., Brasure, M., Kane, R.L., Ouelette, J., Monga, M. (2013). Medical Management to Prevent Recurrent Nephrolithiasis in Adults: A Systematic Review for an American College of Physicians Clinical Guideline. *Annals of Internal Medicine*, *157(7)*, 535

Gettman, M.T., Ogan, K., Brinkley, L.J., Adams-Huet, B., Pak, C.Y., Pearle, M.S. (2005) Effect of cranberry juice consumption on urinary stone risk factors. *Journal of Urology*, *174*(2),590. Retrieved from <u>http://www.ncbi.nlm.nih.gov/pubmed/16006907</u>

Penniston, K., Nakada, S., Holmes, R.P., Assimos, D.G. (2008). Quantitative Assessment of Citric Acid in Lemon Juice, Lime Juice, and Commercially-Available Fruit Juic e Products. *Journal of Endourology*, 22(3), 567-570. doi: 10.1089/end.2007.0304

Penniston, K.L., Steele, T.H., Nakada, S.Y. (2007). Lemonade therapy increases urinary citrate and urine volumes in patients with recurrent calcium oxalate stone formation. *Urology*, *70(5)*, 856-860. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/17919696

Taylor, E.N., Curhan, G.C. (2006). Diet and fluid prescription in stone disease. Kidney International, 70(5),835-839.

Taylor, E.N., Curhan, G.C. (2007). Oxalate intake and the risk for nephrolithiasis. *Journal of the American Society of Nephrology*, *18(7)*, 2198-2204.

Taylor, E.N., Stampfer, M.J., Curhan, G.C. (2005) Obesity, weight gain, and the risk of kidney stones. *Journal of the American Medical Association, 293(4), 455.* Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/15671430

Litholink Stone. (2005). Your Guide to a Low Oxalate Diet.