INTRADIALYTIC PARENTERAL NUTRITION (IDPN)

Created 2007

Supplementary references and updated order forms added in 2014

Submitted by the IDPN Working Group
Table of Contents

1.0 Description .. 3
2.0 Rationale for Use .. 3
3.0 Contraindications ... 3
4.0 Criteria for Initiation ... 3
4.1 Criteria for Discontinuation .. 4
5.0 Composition and Administration .. 4
 Protein ... 4
 Carbohydrates ... 4
 Fat ... 5
 Additional Ingredients:
 Vitamins, Minerals, Electrolytes ... 5
 Insulin .. 5
Table 1: Potential Metabolic Complications .. 6
Table 2: Monitoring Suggestions .. 7
6.0 Special Considerations ... 8
 Interruptions ... 8
 Medications .. 8
 Blood Products ... 8
7.0 Pre-Printed Orders
 Sample IDPN Order Sheet: VCH (VGH) .. 9
 Sample IDPN Order Sheet: RCH ... 10
 Regional Pre-Printed Orders for Intradialytic Parenteral Nutrition ... 11
8.0 References .. 12
9.0 Additional References/Literature Review ... 13

These IDPN guidelines are based on the best information available at the time of publication as well as current clinical practice.
Healthcare professionals using these guidelines are responsible for evaluating the appropriateness of applying them to specific clinical situations.

Currently, the approximate per treatment cost of IDPN is $26.00 ($20.00 for solutions and $6.00 for tubing).
1.0 Description

Intradialytic parenteral nutrition (IDPN) is the provision of nutrients through the venous drip chamber while the patient is undergoing hemodialysis. The solution is administered with an infusion pump at a constant rate.

2.0 Rationale for Use

“When compared to the demographically adjusted general population, dialysis patients experience greater signs and symptoms of wasting, malnutrition, morbidity and mortality. It is estimated that 50% to 70% of dialysis patients suffer from PEM (Protein Energy Malnutrition). In adults, the presence of PEM is one of the strongest predictors of morbidity and mortality.”

There are several factors that are responsible for malnutrition in hemodialysis patients, including but not limited to the following: 1,2

- dietary restrictions
- taste alterations/lack of appetite
- loss of nutrients during dialysis
- chronic inflammation
- metabolic and hormonal disturbances
- superimposed illnesses and infections
- gastroparesis.

For some malnourished patients where standard nutrition intervention has been unsuccessful, IDPN is a feasible option. IDPN is insufficient to meet the nutrient needs of patients. However, it does provide substantial calories and protein to augment oral intake. Randomized controlled trials are needed to define the impact of IDPN on nutritional status and support its efficacy in improving clinical outcomes.

3.0 Contraindications

- Allergy to eggs, corn or sulfites
- Excessive, chronic fluid overload
- Patient refusal to initiate IDPN
- Patient is palliative with no anticipated increase in quality of life with IDPN

4.0 Criteria For Initiation (Adapted From 3,4)

A renal dietitian should assess the appropriate use of IDPN

Patients must meet any three of the following criteria:

- 3 month average serum albumin less than 34 g/L
- Unintentional weight loss of greater than 10% of usual body weight (UBW) or current weight less than 90% of ideal body weight (IBW).
- Subject Global Assessment (SGA): score B or C indicating moderate to severe malnutrition.
- Diet history showing a decreased intake:
 - Protein less than 1.0g/kg/day.
 - Calories less than 25 kcal/kg/day (less than or equal to 30 kcal/kg/day for those with higher calorie requirements).
- Documented diagnosis of a gastrointestinal disorder (e.g. gastroparesis, malabsorption syndromes).

AND the patient must demonstrate the following:

- Failed attempts to increase nutritional status with oral nutritional supplements
- Is not a candidate for tubefeeding (e.g. where nasogastric or gastrostomy feeding is unsafe or impractical)
- Is able to meet greater than or equal to 50% of needs orally
4.1 Criteria For Discontinuation
(adapted from 4)

Patient must meet any three of the following criteria:
• 3 month average serum albumin greater than 34 g/L
• Increasing dry weight trend
• Improved SGA score: A or B
• Increased oral intake to:
 • Protein greater than 1.0g/kg/day
 • Calories greater than 25 to 30 kcal/kg/day

OR the patient demonstrates one of the following:
• No benefit after 6 months of IDPN
• Complications of/intolerance to IDPN

5.0 Composition And Administration

IDPN solutions are the same as other central TPN solutions. Protein is supplied as amino acids, carbohydrate as dextrose and lipids as a soybean emulsion. All three macronutrients can be combined together to form a three-in-one admixture. Alternatively, amino acids and dextrose can be combined in one bag and lipids alone in another.

• There are no definitive guidelines on how to initiate IDPN. Individual needs and the tolerance of each patient should be taken into account. It may be prudent to start patients at half the goal volume and progress to goal depending upon glycemic control and tolerance to the infusion. Starting slowly and working up to a level that provides maximum nutrients will assist with preventing adverse effects.

Protein:
Currently, the most commonly used solution in B.C contains 10% amino acids. An optimal IDPN treatment provides at least 50 grams of protein. Lower protein intakes result when fluid volume must be limited.

250 ml of a 10% amino acid solution = 25 grams of protein
500 ml of a 10% amino acid solution = 50 grams of protein

• Calories from all energy sources, including amino acids, are used to calculate the total energy being provided.8
• Each gram of protein provides 4 kcal.

Carbohydrates:
• Currently, concentrated sources of dextrose (e.g. Dextrose 70% or Dextrose 50%) are used to achieve the final dextrose concentration ordered.

250 ml of a 50% dextrose solution = 125 grams of dextrose

• Each gram of dextrose provides 3.4 kcal.
• Unlike TPN where the maximum glucose infusion is 5 mg/kg/min, IDPN often exceeds this rate as it is generally infused over 3.5-4.0 hours.

Fat:
• Fat is a concentrated source of calories and provides essential fatty acids.
• At the time of this publication, the most commonly used solution in BC is a 20% lipid emulsion, which provides 2 kcal/mL.

250 ml of 20% lipid = 50 grams of fat

• Each gram of fat provides 10 kcal (due to emulsifying agent).
• Fat should not exceed 60% of total calories.
• Lipid emulsions contain Vitamin K and egg phospholipid.\(^6\)
• Maximum clearance rate of 20% lipid is 1 ml/minute or 60 ml/hour.
• In practice, up to 250 ml of 20% lipid is infused over 3.5 to 4.0 hours. For run times shorter than 3.5 hours, a smaller volume is infused.

Additional Ingredients:

• Vitamins, minerals and electrolytes
 These are not routinely added but may be required for selected patients with high exogenous losses (e.g. high output fistulas/ostomies; Crohn’s Disease)
• Insulin
 Glycemic control is a major concern with IDPN given the relatively high rate of dextrose infusion. Blood glucose should be monitored before, during and at the end of the hemodialysis run. Insulin should be considered when serum glucose levels exceed 16.5 mmol/L.\(^6,8\) In this situation, five units of regular insulin per 1000mL of IDPN solution has been suggested as an initial starting dose, with incremental increases of 2 units\(^6,8\) as needed. Serum glucose levels should not fall below 6.0 mmol/L. A snack of 15-30 grams of carbohydrate near the end of the hemodialysis run (20-30 minutes) is recommended to prevent post dialysis hypoglycemia.
<table>
<thead>
<tr>
<th>OBSERVATION</th>
<th>POSSIBLE CAUSE</th>
<th>MANAGEMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hyperglycemia</td>
<td>• Pre-existing diabetes</td>
<td>• Regular insulin added to IDPN</td>
</tr>
<tr>
<td></td>
<td>• Infection</td>
<td>• Sliding scale insulin subcutaneously</td>
</tr>
<tr>
<td></td>
<td>• Rapid infusion of dextrose</td>
<td>• Observe for signs and symptoms of infection</td>
</tr>
<tr>
<td></td>
<td>• Concurrent steroid therapy</td>
<td>• Routine blood glucose monitoring</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Do not speed up infusion to compensate for lost time</td>
</tr>
<tr>
<td>Hypoglycemia</td>
<td>• Hyperinsulinemia can persist if concentrated dextrose solution is discontinued abruptly</td>
<td>• Monitor blood glucose post IDPN</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Provide and encourage a snack of 15-30g of carbohydrate 20-30 minutes prior to discontinuing IDPN</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Adjustment of insulin prn</td>
</tr>
<tr>
<td>Electrolyte Abnormalities Associated with Refeeding</td>
<td>• Infusion of dextrose can cause an intracellular shift of electrolytes</td>
<td>• Routine monitoring of potassium, magnesium and phosphorus</td>
</tr>
<tr>
<td></td>
<td>• Increased demand for electrolytes due to anabolism</td>
<td></td>
</tr>
<tr>
<td>Respiratory Distress</td>
<td>• Excessive CHO load resulting in increased CO₂ production.</td>
<td>• Observation and evaluation of pulmonary status</td>
</tr>
<tr>
<td></td>
<td>• Too rapid infusion of IDPN</td>
<td>• Provide dextrose and lipid in a 50:50 energy ratio</td>
</tr>
<tr>
<td></td>
<td>• Most likely to occur when glucose is the sole non-protein energy source (e.g. no lipid)</td>
<td>• Ensure patient’s “dry” weight is obtained by the end of the dialysis session</td>
</tr>
<tr>
<td>Abnormal Liver Function (Elevated Liver Enzymes, Hypertriglyceridemia, Hepatic Steatosis)</td>
<td>• Hyperglycemia</td>
<td>• Mandatory testing of ALT, Alk Phos, total bilirubin, TG</td>
</tr>
<tr>
<td></td>
<td>• Excessive lipid and/or carbohydrate intake</td>
<td>• Controlling BG</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Prescribing appropriate amounts and infusion rates of macronutrients</td>
</tr>
</tbody>
</table>
Table 2: Monitoring Suggestions

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>SCHEDULE</th>
</tr>
</thead>
<tbody>
<tr>
<td>LABORATORY TESTS (PRE-DIALYSIS)</td>
<td></td>
</tr>
<tr>
<td>CBC</td>
<td>* Initial treatment, weekly x 2 weeks, then every 4-6 weeks to coincide with regular dialysis blood work.</td>
</tr>
<tr>
<td>Electrolytes (K⁺, Ca²⁺, P04⁻, Mg²⁺)</td>
<td></td>
</tr>
<tr>
<td>Urea</td>
<td></td>
</tr>
<tr>
<td>Albumin, Liver Function Tests (alk phos, AST, Total bilirubin)</td>
<td>* Initial treatment, then every 4-6 weeks to coincide with routine dialysis blood work schedule.</td>
</tr>
<tr>
<td>Triglycerides</td>
<td></td>
</tr>
<tr>
<td>Creatinine</td>
<td></td>
</tr>
<tr>
<td>MONITORING DURING RUNS</td>
<td></td>
</tr>
<tr>
<td>Weight, BP, heart rate, temperature</td>
<td>Pre and post each IDPN</td>
</tr>
<tr>
<td>Blood glucose via glucose meter*</td>
<td></td>
</tr>
<tr>
<td>*CONTACT MD: if glucose is less than 6.0 or greater than 16.5 mmol/L</td>
<td></td>
</tr>
<tr>
<td>Non-diabetic: pre, mid and 30 min post for first 3 IDPN runs</td>
<td></td>
</tr>
<tr>
<td>Diabetic: pre, mid and 30 min post for 6 IDPN runs, then weekly</td>
<td></td>
</tr>
<tr>
<td>Note: Continue glucose monitoring if BG is greater than 16.5 mmol/L AND resume glucose monitoring when making any adjustments in dextrose volume.</td>
<td></td>
</tr>
</tbody>
</table>
6.0 Special Considerations

• **Interruptions:**
 • For dialysis interruption longer than 10 minutes, hold IDPN. Once dialysis is re-initiated, recommence infusing solution at the previous rate. Do not increase the rate of infusion to compensate for lost time. Discard the remainder of the solution upon discontinuation of dialysis.

• **Medication Guidelines:**
 • **Antibiotics:** Vancomycin (usually given over the last hour of dialysis) or other antibiotics (given during dialysis) should not be infused through the same chamber as IDPN. The IDPN solution should be switched to the arterial chamber and the antibiotic infusion should be given via the venous chambers. For those who are on single needle dialysis, IDPN should be discontinued when antibiotics are being infused.
 • **Iron Products:** Iron products should be infused through the arterial chamber with the IDPN solution continuing in the venous chamber. For single needle dialysis patients, IDPN should be discontinued prior to administration of IV iron.
 • **For Iron Dextran test dose:**
 • If a patient is already receiving IDPN for at least 3 runs, test dose of iron may be given.
 • If a patient has been receiving IDPN for less than 3 runs, hold IDPN for that run and administer IV iron test dose.
 • If a patient is receiving IDPN for the first time and is already receiving iron, iron does not need to be held.

• **Blood Products:**
 Blood/blood products may be given concurrently with IDPN infusion during dialysis. Ensure that the blood/blood products and IDPN are not infused via the same chamber. For single needle dialysis patients, IDPN should be held for that dialysis session.
Intradialytic Parenteral Nutrition (IDPN)

IF YOU RECEIVED THIS FACSIMILE IN ERROR, PLEASE CALL 604-875-4077 IMMEDIATELY

ORDERED

COMPLETE OR REVIEW ALLERGY STATUS PRIOR TO WRITING ORDERS

Intradialytic Parenteral Nutrition (IDPN)
(items with check boxes must be selected to be ordered)

Date: ___________ Time: __________

Dialysis Days/Run Time ________________

IDPN Formula and Infusion Rate

<table>
<thead>
<tr>
<th>IDPN Formula (check box)</th>
<th>Total Volume 750 mL<sup>1</sup></th>
<th>Total Volume 1,000 mL<sup>2</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Amino Acid 10% w/o Lytes 350 mL</td>
<td>Amino Acid 10% w/o Lytes 500 mL</td>
</tr>
<tr>
<td></td>
<td>Dextrose 70% 150 mL</td>
<td>Dextrose 50% 250 mL</td>
</tr>
<tr>
<td></td>
<td>Fat Emulsion 20% 250 mL</td>
<td>Fat Emulsion 20% 250 mL</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Dialysis Run Time (check box)</th>
<th>Infusion Rate<sup>3</sup></th>
<th>Infusion Rate<sup>2</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>3.5 h</td>
<td>225 mL/hour</td>
<td>300 mL/hour</td>
</tr>
<tr>
<td>4.0 h</td>
<td>195 mL/hour</td>
<td>260 mL/hour</td>
</tr>
</tbody>
</table>

¹Total calories = 997 kcal
²Total calories = 1125 kcal
³Ten minutes total start-up/take-off time has been considered in rate calculations

IDPN Schedule

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Schedule</th>
</tr>
</thead>
<tbody>
<tr>
<td>Laboratory Tests (Predialysis)</td>
<td></td>
</tr>
<tr>
<td>CBC</td>
<td>Initial treatment, weekly x 2 weeks, then every 6 weeks</td>
</tr>
<tr>
<td>Electrolytes (K<sup>+</sup>, Ca<sup>++</sup>, PO<sub>4</sub><sup>-</sup>, Mg<sup>+</sup>)</td>
<td></td>
</tr>
<tr>
<td>Urea</td>
<td></td>
</tr>
<tr>
<td>Albumin</td>
<td>Initial treatment, then every 6 weeks</td>
</tr>
<tr>
<td>Liver function tests (alkaline phosphatase, AST, total bilirubin)</td>
<td></td>
</tr>
<tr>
<td>Triglycerides</td>
<td></td>
</tr>
<tr>
<td>Creatinine</td>
<td></td>
</tr>
<tr>
<td>Zinc</td>
<td>Initial treatment only</td>
</tr>
</tbody>
</table>

Monitoring During Runs	
Weight, BP, heart rate, temperature	Pre and post each IDPN
Blood glucose via glucometer*	
*CONTACT MD if glucose less than 6 or greater than 18 mmol/L	Non-diabetic: pre, mid and 5-min post for first 3 IDPN runs Diabetic: pre, mid and 5-min post for first 6 IDPN runs, then weekly

Prescriber’s Signature IDPN Printed Name VCH.VA.PPO.205 College ID Rev.FEB.2014

SAMPLE FROM VANCOUVER COASTAL HEALTH
Intradialytic Parenteral Nutrition (IDPN)

Regional Pre-Printed Orders for INTRADIALYTIC PARENTERAL NUTRITION

ORDERING INTRADIALYTIC PARENTERAL NUTRITION (IDPN):
IDPN Order form must be received in Pharmacy by 12:00 H one day before the first bag is required. A new IDPN Order form must be completed for any changes required to an IDPN order. Renal dietitian consult is recommended upon initiation of IDPN.

Core Solutions:
- Amino Acids 7% and Dextrose 20% 500 mL
- Amino Acids 7.5% and Dextrose 16.6% 750 mL

Additives (per core solution bag):
- Insulin Regular Human
 - ______ units
 - Infuse over _______ hours during dialysis

Lipid Emulsion 20% ______ mL provides ______ g fat and ______ kcal
(0.2 g fat and 2 kcal per mL)
- Infuse over _______ hours (maximum rate: 60 mL/hour)

Nutritional Support
Liquid nutritional supplement (e.g. Nupro® or Ensure Plus®) at the end of each treatment - 1 container

Date to start: _______ Time: _______

Planned dialysis schedule

<table>
<thead>
<tr>
<th>Day</th>
<th>Time</th>
</tr>
</thead>
</table>

Bloodwork
- Baseline (pre-dialysis at first IDPN): CBC, K, CA, PHOS, MG, GLU, BILI T/D, ALK, AST, ALB, TRIG
- Before the first 3 IDPN treatments: K, PHOS, MG
- 3 weeks after commencing IDPN: repeat baseline bloodwork
- Every 6 weeks: BILI T/D, ALK, AST, TRIG
- Glucose: pre-hemodialysis, then 1 hour after commencing hemodialysis, and at termination of IDPN
 (contact physician if glucose level is less than 6 or over 16.5 mmol/L)
- Non-diabetic: with first 4 runs, then 3 weeks after commencing IDPN
- Diabetic: with first 4 runs, then weekly
- Other: _______
Regional Pre-Printed Orders for
INTRADIALYTIC PARENTERAL NUTRITION
Cont’d

CRITERIA FOR INITIATION
Patients must meet any three of the following:
- 3 month average serum albumin less than 34 g/L
- Unintentional weight loss of more than 10% of usual body weight or current weight is less than 90% of ideal body weight (IBW)
- Subject Global Assessment (SGA) - score of 5/7 or less indicating moderate to severe malnutrition
- Diet history showing a decreased intake of protein (less than 1 g/kg/day) or calories (less than 20-25 kcal/kg/day; 30 kcal/kg/day or less for those with higher calorie requirements)
- Documented diagnosis of a gastrointestinal disorder (e.g. gastroparesis, malabsorption syndromes)
AND the patient must demonstrate the following:
- Failed attempts to increase nutritional status with oral nutritional supplements
- Is not a candidate for tube feeding (e.g. where nasogastric or gastrostomy feeding is unsafe or impractical)
- Is able to meet 50% of needs orally or more

CRITERIA FOR DISCONTINUATION
Patient must meet any three of the following:
- 3 month average serum albumin more than 34 g/L
- Increasing dry weight trend
- Improved SGA score
- Increased oral intake of protein (more than 1 g/kg/day) or calories (more than 25 to 30 kcal/kg/day)
OR the patient demonstrates one of the following:
- No benefit after 6 months of IDPN
- Complications of intolerance to IDPN

CONTRAINDICATIONS
- Allergy to eggs, corn or sulfites
- Excessive, chronic fluid overload
- Patient refusal to initiate IDPN
- Patient is palliative with no anticipated increase in quality of life with IDPN

TRACE ELEMENT SOLUTION
Standard Trace Element Solutions added to IDPN when needed:
1 mL Micro +6S and 2 mg Zinc Sulfate per IDPN bag

<table>
<thead>
<tr>
<th>Micro component</th>
<th>per 1 mL</th>
<th>daily recommendation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chromium</td>
<td>4 mcg</td>
<td>10-15 mcg</td>
</tr>
<tr>
<td>Copper</td>
<td>0.4 mcg</td>
<td>0.3-0.5 mcg</td>
</tr>
<tr>
<td>Manganese</td>
<td>100 mcg</td>
<td>60-100 mcg</td>
</tr>
<tr>
<td>Selenium</td>
<td>20 mcg</td>
<td>20-60 mcg</td>
</tr>
<tr>
<td>Zinc</td>
<td>1 mcg</td>
<td>2.5-5 mcg</td>
</tr>
<tr>
<td>Iodine</td>
<td>25 mcg</td>
<td></td>
</tr>
</tbody>
</table>

References:
BC Provincial Guidelines - Intradialytic Parenteral Nutrition (IDPN) - March 2008
Intradialytic Parenteral Nutrition (IDPN)

8.0 References

9.0 Summary of IDPN References

(Reviewed by J. Aviani 2007)
(Updated by K. Shalansky and M. Leung 2014)

Intradialytic parenteral nutrition IDPN: Changes in albumin, total protein, dry weight, BUN, and creatinine after 3 to 12 months of therapy. Deborah Scholl, Richard Dowling, Michelle Ricker, Stan Lindenfeld, Pentec Health Inc. Boothwyn, PA, USA.

Observational retrospective study of response to IDPN in 164 HD patients. Conclusion: IDPN was well tolerated and resulted in positive responses in albumin, total protein, and BUN. IDPN appears to be an effective therapy for raising albumin levels in MHD patients with protein malnutrition.

In the French Intradialytic Nutrition Evaluation study (FineS) investigators evaluated the effects of 1 year IDPN given in addition to oral supplements. The addition of IDPN to oral supplements did not improve mortality, hospitalization, disability, or nutritional status.

An efficient nutrition support, independent from the way of supply, improved nutritional status and significantly increased survival. Main limitation of oral supplementation may be patient compliance.

This study in Peterborough had 8 HD patients receive IDPN from 1.5 to 16 months. They saw mean increase in albumin of 7 g/L, nPNA increased significantly by .65 and average weight increased by 1.13 kg.

Concluded: IDPN is costly and will continue to be reserved for malnourished patients who fail enteral nutrition supplements.

Many patients have PEM. Most patients with ESRD have protein and energy intake levels below KDOQI guidelines. Growing body of data shows malnutrition correlates with increased morbidity and mortality.

Management of malnutrition includes nutritional counselling and oral supplements. The problem is that many patients have decreased appetite and do not tolerate increased intake and/or oral supplements. Enteral feeds have the disadvantages of possible GI intolerance and risk of aspiration and infection. IDPN has the advantage of convenience, vascular access already available. Disadvantages of IDPN include cost, need for several months treatment before improvement seen, and it does not meet 100% of requirements.

Based on studies currently available response to IDPN was dependent on baseline nutritional status.
and duration of treatment. Patients who were malnourished benefited more.

5. Capelli et al in Am J of Kidney Diseases 1994;23:808-816. IDPN given to 81 malnourished patients for 9 months. Results showed significant weight gain and decreased mortality with IDPN.

Retrospective studies showed patients who received IDPN demonstrated reduced hospitalization rates, length of stay and costs.

The authors conclude: Based on the available studies it appears IDPN use in malnourished HD patients may result in decreased morbidity and mortality. Large scale randomized controlled trials are needed to confirm this.

Fractional synthetic rate (FSR) of albumin provides a direct estimate of acute changes in hepatic albumin synthesis. Authors studied 7 HD patients during 2 HD sessions, one with IDPN and one without. Study design was randomized cross-over with 4 week period between sessions. Results indicate that IDPN significantly improves FSR of albumin (84% increase in IDPN session vs 54% increase in control session). IDPN also increased whole body protein synthesis by 83% vs 17% increase in control session. Issue with the study is that the population was well-nourished without evidence of inflammation, so it is unknown if the results would also occur in malnourished patients.

The study demonstrated short term effects only.

Authors conclude that IDPN is protein anabolic in the acute setting in chronic HD patients.

Author reviews the 30 studies that addressed the nutritional effects of IDPN. Most reports come from cohort studies. There were 5 non-randomized trials that compared patients treated with IDPN with control patients. All these showed an improvement of the measured nutritional outcomes.

One randomized controlled trial compared 12 patients on IDPN for 3 m vs 14 controls and showed an improvement in body weight, AMC, TSF, albumin and prealbumin. The data seems to argue for the metabolic and nutritional efficacy of IDPN, however a key point for clarifying the indications of IDPN is to evaluate the effect on morbidity and mortality and better characterize the patients who could best benefit from this treatment.

The author discusses Foulks CJ: The effect of intradialytic parenteral nutrition on hospitalization rate and mortality in malnourished hemodialysis patients. J Renal Nutr 1994;4:5-10. Study reports when the nutritional status was improved, the 9-month survival was increased and the hospitalization rate was reduced.

The study provided 500 cc 10% amino acid solution and followed serum albumin, SGA, weight, MAC, TLC. 107 patients completed 6 months. Mean albumin concentration increased significantly from 32.5 to 37.1. The rate of improvement correlated significantly and negatively with baseline albumin concentration. The change in albumin correlated significantly with the number of amino acid administrations at 3 months. The SGA score improved significantly as well from 16 to 11. SGA score correlated significantly with albumin. Higher frequency of amino acid supplementation also correlated with better improvement in SGA score. Weight remained the same but MAC changed significantly.

Authors conclude that it is clear that malnutrition in HD patients is common and generally associated with increased morbidity and mortality.

Retrospective data analyses have demonstrated that IDPN is a satisfactory method to modify the outcome in patients. IDPN may represent a useful therapy in those malnourished patients with nutritional requirements that cannot be fully met by oral intake and in whom enteral nutrition has been contraindicated.

In this study patient data was collected up to 6 months before IDPN began allowing patients to act as their own controls.

Criteria to start IDPN were any 3 of the following:

1. Albumin less than 34
2. Unintentional weight loss greater than 10% body weight or current weight less than 90% IBW
3. Diet history shows a decrease in the intake of protein to less than 1 g/kg/d or of calories to less than 25 kcal/kg/d
4. SGA yields a B or C rating, indicating moderate to severe malnutrition
5. Protein catabolic rate is less than 1 g/kg/d
6. There is a documented diagnosis of a gastrointestinal disorder (eg gastroparesis, malabsorption syndrome).

AND: Patient can meet greater than or equal to 50% of needs orally and has not been able to
Intradialytic Parenteral Nutrition (IDPN)

increase oral intake with supplements, is not a candidate for tube feed and all attempts have been made to achieve adequate dialysis.

The authors assessed the efficacy of IDPN by % change from baseline in serum albumin concentration and dry body weight. Patients were assessed at 3 and 6 months before IDPN therapy began and at 3, 6, 9 and 12 months after.

The authors conclude the use of IDPN for mean of 4.3 months in malnourished HD patients reversed a significant downward trend in dry body weight before initiation and significantly increased dry body weight at 6, 9, 12 months after therapy began. Study demonstrated a significant increase in body weight and serum albumin in malnourished HD patients who received IDPN for 3-6 months.

Net whole body protein accretion improved substantially during IDPN administration in contrast with net catabolism during regular HD. Findings clearly support the premise that the infused amino acids are retained and used by these patients. The study only reports on short term effects of IDPN on non-malnourished patients. The authors summarize that IDPN has a positive effect on protein and energy metabolism in stable chronic HD patients.

Maintenance HD patients who satisfy each of the following 3 criteria may benefit from IDPN:

1. Evidence of protein or energy malnutrition and inadequate dietary protein and/or energy.
2. Inability to administer or tolerate adequate oral nutrition including supplements or tube feed.
3. The combination with oral or enteral intake which, when combined with IDPN will meet the individual’s nutritional needs.

Previously published studies support the use of IDPN for selected maintenance HD patients who are malnourished and eating poorly.

IV route may be the only solution when nutritional advice and oral supplements give insufficient results. Proven benefit is still controversial however several authors find it reasonable to try IDPN in severely malnourished HD patients when other measures fail.

The authors conclude that prospective, controlled long-term studies in malnourished HD patients using IDPN are scarce. High mortality rate of malnourished HD patients makes it difficult to include untreated control groups because of ethical constraints. Studies that demonstrated a beneficial result of IDPN required about 3 months of therapy before significant improvement could be noted.

Maintenance HD patients who satisfy each of the following 3 criteria may benefit from IDPN:
Several studies point to an improvement of patient condition when parenteral nutrition is administered during HD in malnourished patients showing no benefit from oral supplementation. Unequivocal proof of benefit by prospective trials is lacking at this moment.

Generally renal professionals manage PCM using a conventional approach (which does not include IDPN) however for a small % of malnourished patients IDPN is the treatment of choice. This group often does not tolerate oral supplementation and/or may refuse enteral tube feed.

Arguments against IDPN include the hypothesis that treatment of malnutrition requires treatment of the ongoing catabolic process, that it’s expensive and lack of studies documenting effectiveness.

A problem with the use of oral supplements is that malnourished patients often have decreased appetite and do not tolerate increased oral intake making oral supplementation difficult. PEG feeding may not be tolerated and has risk of aspiration and infection.

Medicare criteria of a documented small bowel disease or GI motility disorder and demonstrated malnutrition result in restrictive qualifications which make it difficult to design a study to demonstrate effectiveness.

Authors conclude: data currently available indicates the impact of IDPN on nutritional status and clinical outcome is not precisely defined and there is a need for a randomized long term prospective trial looking at frequency and length of hospitalization to capture costs and mortality.

Table 1 Criteria for Initiating:

1. 3 m rolling average albumin less than 3.4 g
2. 3 m rolling average creatinine less than 8.0 mg
3. weight loss greater than 10% IBW or 20% UBW
4. clinical exam consistent with moderate to severe malnutrition
5. history of decreased intake protein less than 0.8 g/kg or calories less than 25 kcal/kg
6. SGA score C

any 3 of above with: failed attempts at increased dietary and oral supplemental therapy, refusal to undergo enteral tube feeding except for patients who truly have permanent and totally diseased GI tract IDPN should be short term of 4-6 months.
Table 2 Criteria for Discontinuing IDPN:

1. Attaining a 3-month rolling average predialysis serum albumin of 3.8 g or greater
2. Attaining a 3-month rolling average serum creatinine of 10 mg/dL or greater
3. Clinical examination of improving nutrition, including increased dry weight
4. SGA A or B rating
5. Increase in oral intake to: Protein intake greater than 1.0 g/kg Calorie intake greater than 30 kcal/kg

Any 3 of above or either no improvement after 6 m of IDPN or complications/intolerance of IDPN.

Thorough review of published articles suggests a relationship between the use of IDPN and improved patient outcome measured by hospitalization rate and decreased mortality in certain subgroups.

Best recommendation that can be made for IDPN is that it may represent a useful form of nutrition support in the malnourished HD patient who has no other active disease processes, cannot ingest adequate nutrition orally and is not a candidate for enteral feeding.

Multiple reports note IDPN is associated with increased appetite and well-being. It is not known if this is secondary to the increased attention of the physician and dietitian in addressing problems like underdialysis, anorexia, medication effects, depression and other issues that can contribute to malnutrition.

Why are tube feeds not often used in HD patients?
- concerning volume overload
- cost
- invasiveness
- presumed patient discomfort
- patient refusal

Advantage of IDPN is presence of vascular access simplifies the nutrition intervention, does not result in compliance issues.

IDPN may be a useful therapy in certain patient groups however attention to other problems that may cause anorexia or malnutrition must be sought and remedied.

Data showed marginally significant reduction in odds of death with IDPN treatment when patients with albumin less than 34 were analyzed and a highly significant reduction in patients with albumin less than 33.

Possible reasons include: IDPN reduces malnutrition or possible placebo effect (due to increased physician attention, nutritional counselling).

The authors summarize: data demonstrate an association between IDPN treatment and enhanced survival in malnourished HD patients.

This was a prospective randomized trial of 186 malnourished hemodialysis (HD) patients. All patients were randomized to receive oral supplements with (n = 93) or without IDPN (control, n= 93) x 1 year. IDPN was given at each HD session. Patients who received IDPN at months 3, 6, and 12 were 87%, 79% and 67%, respectively. Primary outcome was mortality at 2 years. Mean serum albumin in the control group was 31.5 +/- 3.7 compared to 31.6 +/- 4.4 g/L. Two-year mortality rate was not significantly different between the 2 groups (38.7% control vs 43% IDPN).

This is a current review of IDPN literature looked at both nonrandomized and randomized studies of IDPN. Their conclusion was that there is a lack of data to definitely show either effectiveness or lack of benefit of IDPN. IDPN alone given thrice weekly will not maintain good protein-energy nutritional status or correct protein-energy wasting. It should be used only in concert with other sources of nutritional intake which provide at least 50-80% of patient’s protein and energy needs.