Gonadal Toxicity with Cyclophosphamide

Infertility is a major concern for patients and providers when considering cyclophosphamide (CYC) therapy. Although CYC can be life/organ saving, it is toxic to both the ovaries and testes amongst other side effects.

According to the published literature, the incidence of gonadal dysfunction is believed to be dependent upon the patient’s:
1. Sex
2. Age
3. Cumulative CYC dose

Severity of disease, duration of therapy and route of administration has also been associated with gonadal toxicity, although data is either minimal or conflicting. We would like to remind the reader that patients of any age may have baseline deficiencies in semen quality or have subclinical ovarian damage/diminished ovarian reserve, and that fertility in females certainly declines in the last 2 decades prior to menopause (according to the American Society of Reproductive Medicine, most women in their mid-40’s are unable to have successful pregnancies); in addition, amenorrhea or azoospermia may result from stress to the body, such as during acute illness. For example, 54% of female patients (age 18 to 39) with systemic lupus erythematosus (SLE) in one study experienced amenorrhea without receiving any CYC. Thus, our literature review focused on data in patients with GN from controlled studies, although much of the available data is from non-controlled, retrospective, observational studies - we clearly indicate the study design from where the data is derived (APPENDIX A summarizes our methodology).

PHARMACOLOGY OF CYC:
CYC is an alkylating agent that prevents cell division by cross-linking DNA strands and decreasing DNA synthesis. By suppressing the rapidly dividing cells of the immune system, it may place the patient’s glomerulonephritis (e.g. Lupus nephritis or ANCA-associated vasculitis) into remission.

PATHOPHYSIOLOGY OF FEMALE GONADAL TOXICITY WITH USE OF CYC:
Given CYC’s ability to prevent cell division, growing ovarian follicles are more vulnerable to its cytotoxic effects than primordial follicles. In animal models, it has been demonstrated that after a dose of CYC, serum estradiol levels and the number of granulosa cells expressed will decrease (i.e. follicles have been destroyed); this leads to up regulation of follicle-stimulating hormone secretion, which accelerates further follicle recruitment that perpetuates a vicious cycle leading to an accelerated depletion of ovarian follicles. The end result is amenorrhea and therefore infertility. Depending on the study, the cumulative incidence of ovarian failure when used to treat lupus nephritis (LN) varies between 12 and 83%.

If menses continues during CYC therapy, or it resumes after CYC therapy is finished, the patient should be considered fertile, although one study from Saudi Arabia (N=535) found that patients with SLE previously exposed to CYC had a higher risk of pre-term deliveries compared to those who didn't (41 vs. 21%). Another retrospective observational study from France (N=84) found premature deliveries to occur in 62% of LN patients who had previously been treated with IV CYC, while Park et al. found no increase in premature deliveries or low birth weights in patients with LN and ANCA-associated vasculitis (AAV) at a single center in Korea (N=67). For patients of childbearing age, the use of contraception is recommended during therapy to prevent pregnancy while exposed to this teratogen; there is insufficient evidence/controversy over whether oral contraceptives or the use of Gonadotropin-releasing hormone will reduce the risk of CYC-related amenorrhea.
Lastly, longitudinal studies are required to determine if patients who maintain menses are at an increased risk of premature menopause.

RISK FACTORS FOR FEMALE GONADAL TOXICITY WITH USE OF CYC:

Women treated after the age of 30 are at a significantly higher risk of infertility compared to younger patients; in addition, the total cumulative dose is an independent risk factor for ovarian toxicity regardless of how the medication is administered.\(^4\)\(^-\)\(^6\)\(^,\)\(^10\)\(^,\)\(^11\) Duration of therapy and baseline severity of disease may also influence risk of amenorrhea, although this data is not as robust.

Age at onset of CYC therapy:

The highest quality data demonstrating age as a risk factor comes from a retrospective controlled clinical study of women treated for LN (N=39) with IV CYC (0.5 to 1 g/m\(^2\) monthly x 7 to 15 doses). Sustained amenorrhea occurred in 12% of women < 26 years, in 27% of those aged 26 to 30, and in 62% of those > 30 compared to no observed amenorrhea in patients who only received IV methylprednisone (1 g/m\(^2\) x 9 doses).\(^4\)

There are also 3, uncontrolled, retrospective single center chart reviews addressing the issue of age and gonadal failure in patients who received CYC. In the first review, LN patients treated with IV CYC (0.5 to 0.75 mg/m\(^2\) monthly x 6 months then q3months x 18 months) developed sustained amenorrhea in 0 women < 20 years, 6% of women 21 to 31 years, 23% of women 31 to 40 years and in 75% of women > 40 years.\(^4\) In the second study, patients with LN and AAV who received IV CYC (0.9 ± 0.14 g per pulse x 13 ± 6.5 doses) developed sustained amenorrhea in 0 patients < 25, in 45% of patients > 31 and in 83.3% of patients > 40.\(^5\) In the final study of LN patients (N=92) treated with oral CYC (1 to 2 mg/kg/day with duration unspecified), the risk of sustained amenorrhea was 4% in women < 21 years, 29% in women 21 to 30 years and 54% in women > 30 years.\(^6\) The mean age of patients who developed amenorrhea was 30.8 ± 7.4 vs. 24.3 ± 6 (p<0.01) in women who did not develop amenorrhea.\(^6\)

In summary, younger women have greater ovarian reserve and are therefore less likely to experience ovarian failure with CYC exposure. According to the limited data available, it appears women < 20 are unlikely to experience ovarian failure with an initial course of CYC (0 to 4%), whereas the risk is significant in women > 30 (23 to 54%) and > 40 (75%).

Cumulative exposure to CYC:

Given the relationship between age and ovarian reserve, it is unsurprising that the cumulative exposure associated with onset of amenorrhea depends on age. The most widely cited study on the effects of cumulative exposure on gonadal toxicity is in breast cancer patients (N=18) who took CYC 100 mg/day orally. The average dose of CYC given before the onset of amenorrhea was 20.4 g in women aged 20 to 30, 9.3 g in women aged 30 to 40, and 5.2 g in women who were in their 40s.\(^12\)

The data from GN patients is more difficult to interpret. In a retrospective chart review of patients with LN (N=157) with a median age of 32, the cumulative dose of CYC that resulted in transient amenorrhea (defined as absence of > 3 menstrual cycles < 1 year) was 13 to 17 g, whereas patients with an exposure of 7.5 to 13 g were unaffected.\(^13\) In another study of patients with SLE (N=92) with a mean age of 30, a cumulative dose > 10 g was the only risk factor for premature ovarian failure (defined as sustained amenorrhea > 1 year, with a low estradiol level and a high FSH level).\(^14\) Wang et al., in a single center retrospective chart review found that patients with a mean age of 26 (N=92) could tolerate much higher doses of CYC - the mean cumulative dose causing amenorrhea was 32.6 ± 21.8 vs. 22.4 ± 16.7, (p=0.018) in patients who did not experience amenorrhea.\(^6\) In this study, cumulative doses < 36 g
did not result in amenorrhea in patients aged 14 to 20, but for patients with > 36 g of total exposure the relative risk of sustained amenorrhea was 2.1 (1.46 to 4.02), regardless of age. The final study, which reported total incidence of ovarian failure in all age groups (mean age 31.1 ± 8.4) found the risk to be 0 with < 5 g of exposure, 8% with 5 to 10 g, 25% with 10 to 15 g and 66% with > 15 g of cumulative exposure.

Duration of CYC therapy:
Based on the pathophysiology of ovarian toxicity, a longer duration of therapy should correlate with ovarian failure. However, published data on this risk factor is conflicting; therefore, we recommend the calculation of cumulative dose when assessing risk of ovarian failure, as this accounts for both length of treatment and dosage administered.

Severity of disease:
There is only one study identified in our literature review that assesses baseline severity of disease as a risk factor for amenorrhea. In this retrospective review (N=67), SLE disease activity was rated using the SLE-DAI and damage was rated using the Systemic Lupus International Collaborating Clinics / American College of Rheumatology damage indices. Using logistic regression analysis, the investigators found the damage index at the initiation of IV CYC was independently associated with cessation of menstruation for > 4 months (β = 0.6, SE=0.28, P=0.029) and cessation of menstruation for > 12 months (β = 1.1, SE=0.55, P=0.02). It is worth noting that high disease activity has been associated with menstrual irregularities independent of CYC exposure.

PATHOPHYSIOLOGY OF MALE GONADAL TOXICITY WITH USE OF CYC:
Often, more attention is paid to the infertility risk of CYC exposure in female patients, but men are expected to have a higher severity and incidence of gonadal damage due to greater mitotic activity of the testis. In the testis, the cells within the seminiferous tubules of the germinal epithelium have the highest mitotic and meiotic indices, and are thus most vulnerable to the toxic effects of cyclophosphamide. While sperm counts begin to decline within a few weeks of cyclophosphamide, it typically takes 2 to 3 months for azoospermia to occur, in keeping with the known kinetics of spermatogenesis. Because antineoplastic agents act on the sperm cells during cell division, they are most toxic to the rapidly proliferating type B spermatogonia, which can be reproduced from the germinal stem cell layer. However, the severity and duration of gonadal damage induced by cytotoxic agents correlates best with the number of stem cells (type A spermatogonia) that are destroyed. If the stem cells within the tubules remain intact, spermatogenesis may begin to show recovery approximately 12 weeks after treatment.

Less commonly, cytotoxic agents such as cyclophosphamide can damage Leydig cells, the site of testosterone production within the testis. However, Leydig cell dysfunction in this setting is typically subclinical, characterized by testosterone levels that are at the lower end of the normal range in association with elevated luteinizing hormone levels. The clinical significance of this state of “compensated hypogonadism” is still unclear.

RISK FACTORS FOR MALE GONADAL TOXICITY WITH THE USE OF CYC:
As with females, the severity and risk of gonadal toxicity from cyclophosphamide exposure is dependent on gonadal activity at the time of treatment (prepubertal vs. sexually mature males), and total cumulative dose. Autoimmune diseases such as SLE also influences fertility independent of cyclophosphamide exposure. In one study comparing patients with SLE to healthy age-matched controls (N=70), the patients with SLE had a lower sperm volume (2.3 ± 1 vs. 3.2 ± 1.7 mL, p=0.015), a lower median sperm count (70 x 10^6/mL vs. 172 x 10^6/mL; p=0.02), a lower median motile sperm count (32 x 10^6/mL vs. 119 x 10^6/mL; p=0.004), a lower percentage of normally formed sperm (11.2 ± 8.3 vs. 17.4 ± 11.3%; p=0.011) and were less likely to bear children after disease onset (20 vs. 80%; p=0.0001).
outcomes were even worse if patients received CYC. Even though the severity and incidence of gonadal toxicity is greater in males, this population is not as well studied, and data is derived from a small number of studies, mostly from oncology indications.

Prepubertal males and cumulative CYC dose:
It may comes as no surprise that prepubertal children with inactive gametogenesis have a lower incidence of damage compared to similarly treated sexually mature adults. In one meta-analysis of 30 studies (N=150) of patients with renal disease, Hodgkin's disease and leukemia, the incidence of gonadal failure defined by a combination of semen analysis, LH/LHrH levels, FSH levels was zero up to an exposure of 400 mg/kg (e.g. 30 g in a 75 kg male), after this point, the incidence of gonadal failure increased to 30%. This was sustained toxicity, given time from end of therapy to evaluation was 4.2 ± 2.7 years.16

Sexually mature males and cumulative CYC dose:
In the same meta-analysis that examined prepubertal males, the incidence of gonadal failure in sexually mature males was found to be 20% with exposure as low as 100 to 200 mg/kg (e.g. 7.5 to 15 g in a 75 kg male), 50% with 200 to 300 mg/kg of exposure (e.g. 16 to 20 g in a 75 kg male), 80% with 300 to 400 mg/kg of exposure (e.g. 21 to 30 g in a 75 kg male) and almost 100% with over 400 mg/kg of exposure (e.g. > 30 g in a 75 kg male). Again, this was sustained toxicity, given time from end of therapy to evaluation was 3.8 ± 2.6 years.16

However, there are numerous studies suggesting a lower cumulative exposure to CYC may lead to significant, sustained gonadal toxicity. In 1972, Qureshi et al. published a case series of patients with GN (N=14); they observed that a total CYC dosage of > 11 g led to azoospermia, whereas smaller doses led to a severe reduction in sperm count.19 Next a prospective case control study of patients with Behcet's disease (mean age 31 years) treated with PO CYC and/or colchicine (N=31) found that 91% of patients who received > 10 g of CYC developed azoospermia or severe oligospermia that did not recover during the duration of follow up (up to 37 months).20 Lastly, a prospective cohort study of patients (N=58) who received IV CYC as part of their chemotherapy regimen +/- radiation for Ewing and soft tissue sarcomas, found that even after 5 years of stopping CYC, only 10% of patients recovered normal sperm levels when a total dose of 7.5 g/m² was exceeded (e.g. 13 g for a 1.73 m² male), whereas, 70% of patients who received doses < 7.5 g/m² recovered normal sperm levels.21

SUMMARY:
In summary, the cumulative exposure to CYC that results in ovarian failure varies by age. To avoid amenorrhea, female patients < 20 years old should likely receive < 15 to 20 g of total exposure, patients aged 20 to 30 should receive < 15 g of total exposure and those > 30 should likely receive < 10 g of total exposure. We did not make a recommendation for maximum exposure to prevent infertility in patients > 40 as this group already has a low baseline fertility rate, worsened by disease activity. In males, the maximum CYC exposure for patients who still wish to conceive is lower at approximately 10 g.
REFERENCES:

3. Lexi-Drugs.

APPENDIX A

Search Strategy:
Medline 1946 to Present
Search executed on Aug 9, 2016 (LN ovarian failure), September 29, 2016 (AAV ovarian failure), October 24, 2016 (AAV and LN azoospermia)

Search Terms:
Cyclophosphamide AND ovarian failure AND lupus
 - These are MESH headings, automatically mapped and exploded by Medline
Cyclophosphamide AND azoospermia AND lupus
 - These are MESH headings, automatically mapped and exploded by Medline
Cyclophosphamide AND ovarian failure AND vasculitis
 - These are MESH headings, automatically mapped and exploded by Medline
Cyclophosphamide AND azoospermia AND vasculitis
 - These are MESH headings, automatically mapped and exploded by Medline

Limits:
 o Human
 o English Language

Results:
LN ovarian failure
 - Number of articles identified through database search: n= 46
 - Number of articles identified through review of reference: n=15
 - Full-text papers selected for appraisal and analysis: n=19

LN azoospermia
 - Number of articles identified through database search: n=5
 - Number of articles identified through review of reference: n=0
 - Full-text papers selected for appraisal and analysis: n=2

AAV ovarian failure
 - Number of articles identified through database search: n=5
 - Number of articles identified through review of reference: n=2
 - Full-text papers selected for appraisal and analysis: n=2

AAV azoospermia
 - Number of articles identified through database search: n=1
 - Number of articles identified through review of reference: n=0
 - Full-text papers selected for appraisal and analysis: n=0
Number of articles identified through database search:
(n = 57)

Records after duplicates removed
(n = 50)

Full-text articles assessed for eligibility
(n = 50)

Full-text papers selected for appraisal and analysis
(n = 23)

Records excluded (n = 32)
- 1 review article
- 14 articles were irrelevant
- 14 were not RCTs, quasi-RCTs or were observational trials that did not adequately address gonadal toxicity.

Records added (n = 1)
17 from reviewing references

Records added (n = 1)
17 from reviewing references
Table 1: Risk of premature ovarian failure (POF) with cyclophosphamide in lupus patients according to meta-analysis data from randomized controlled trials

<table>
<thead>
<tr>
<th>Design</th>
<th>Patient(s)</th>
<th>Intervention</th>
<th>Outcome</th>
<th>Conclusion</th>
<th>Limitations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Henderson et al.</td>
<td>Systematic review and meta-analysis of literature published until April 15, 2012*</td>
<td>N=2846</td>
<td>All immunosuppressive treatments</td>
<td>POF (2 studies, n=498) IV CYC vs. MMF RR 0.15, (95% CI 0.03 to 0.8)</td>
<td>Based on high quality data (GRADE), the risk of POF in a patient with LN is reduced by 85% if MMF is used instead of IV CYC</td>
</tr>
<tr>
<td>Treatment for lupus nephritis</td>
<td>RCTs and quasi-RCTs only</td>
<td>Biopsy-proven lupus nephritis in both adult and pediatric patients with class III, IV, V +III and V +IV lupus nephritis</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* There are no relevant RCTs published after 2012

Table 2: Risk of premature ovarian failure (POF) with cyclophosphamide in lupus patients according to randomized controlled data

<table>
<thead>
<tr>
<th>Design</th>
<th>Patient(s)</th>
<th>Intervention</th>
<th>Outcome</th>
<th>Conclusion</th>
<th>Limitations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Appel et al.</td>
<td>Multinational randomized controlled trial</td>
<td>N=370</td>
<td>Impact on women of childbearing age as a result of the potential of IV CYC to cause ovarian dysfunction was not objectively addressed in this study because of the length of follow-up and limited health economic assessments undertaken</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mycophenolate Mofetil versus Cyclophosphamide for Induction Treatment of Lupus Nephritis</td>
<td>Duration: 24 weeks</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Journal of the American Society of Nephrology 2009, 20, 1103-1112</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bao et al.</td>
<td>Randomized controlled trial</td>
<td>N=40</td>
<td>Irregular menstruation:</td>
<td>Multitarget group – 1 (5%) CYC group – 4 (20%)</td>
<td>Numerically lower incidence of irregular menstruation in the multitarget therapy group.</td>
</tr>
<tr>
<td>Successful Treatment of Class V+IV Lupus Nephritis with Multitarget Therapy</td>
<td>Duration: 6 mo to 9 mo</td>
<td>20 pts (16 female) – randomized to multitarget therapy (mycophenolate mofetil, tacrolimus, steroids). 20 pts (18 female) – randomized to CYC therapy (monthly 0.75 g/m² of BSA for 1st month, then adjusted between 0.5 and 1.0 g/m² BSA monthly on the basis of nadir white cell count of ≤2.5 x 10⁹/L to 10 d after the infusion).</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Journal of the American Society of Nephrology 2008, 19, 2001-2010</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Boumpas et al.</td>
<td>Controlled, retrospective clinical study.</td>
<td>N=39</td>
<td>12% of short-CY developed sustained amenorrhea 39% in the long-CY developed sustained amenorrhea</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Risk for sustained amenorrhea in patients with SLE receiving intermittent pulse CYC therapy. Ann Intern Med 1993, Sep;119(11):366-9</td>
<td>Amenorrhea = no menses for at least 4 months Sustained amenorrhea = no menses for at least 12 months</td>
<td>(N=16) pulse CYC (0.5 - 1 g/m²) BSA monthly for a total of 7 doses (short-CY), and 23 patients received ≥ 15 doses (long-CY). Control patients were treated with monthly pulses of methylpred (1 g/m²) for a total of 9 doses</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Study</td>
<td>Design</td>
<td>N</td>
<td>Description</td>
<td>Permanent amenorrhea:</td>
<td>None other than a trend observed toward less severe adverse effects in the pulse regimen compared with continuous regimen</td>
</tr>
<tr>
<td>-------</td>
<td>--------</td>
<td>---</td>
<td>-------------</td>
<td>----------------------</td>
<td>--</td>
</tr>
<tr>
<td>Yee et al. EULAR randomized controlled trial of pulse cyclophosphamide and methylprednisolone followed by azathioprine and prednisolone in lupus nephritis Ann Rheum Dis 2003, 63, 525-529</td>
<td>Multicentre randomized controlled trial</td>
<td>32</td>
<td>Biopsy-proven proliferative lupus nephritis</td>
<td>Continuous therapy (16 pts) – 1 pt 40 y.o. (6.3%)</td>
<td>Amenorrhea was not observed in patients who received methylpred</td>
</tr>
<tr>
<td>N=32</td>
<td>16 pts – randomized to intermittent pulse cyclophosphamide; intravenously 10 mg/kg three times weekly for four doses, then orally same dose split over two days at four weekly intervals for nine months, then at six weekly intervals for 12 months.</td>
<td>Pulse therapy (13 pts) – 1 pt 40 y.o. (7.7%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tak Mao Chan et al. Efficacy of Mycophenolate Mofetil in Patients with Diffuse Proliferative Lupus Nephritis The New England Journal of Medicine 2000, 343, 1156-62</td>
<td>Randomized controlled trial</td>
<td>42</td>
<td>Biopsy-proven proliferative lupus nephritis</td>
<td>Group 1 – 0</td>
<td>Amenorrhea occurred only in the group treated with cyclophosphamide</td>
</tr>
<tr>
<td>N=42</td>
<td>21 pts (group 1) – randomized to oral mycophenolate mofetil (1 g twice/day) + prednisolone (0.8 mg/kg/day)</td>
<td>Group 2 – 3 (23%; 95% CI)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>21 pts (group 2) – randomized to oral cyclophosphamide (2.5 mg/kg/day) + prednisolone (0.8 mg/kg/day)</td>
<td>Permanent amenorrhea:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ginzler et al. Mycophenolate Mofetil or Intravenous Cyclophosphamide for Lupus Nephritis The New England Journal of Medicine 2005, 353, 2219-28</td>
<td>Multicentre randomized controlled trial</td>
<td>140</td>
<td>Biopsy-proven proliferative lupus nephritis</td>
<td>Group 1 – 0</td>
<td>Amenorrhea occurred only in the group treated with cyclophosphamide</td>
</tr>
<tr>
<td>N=140</td>
<td>71 pts (group 1) – randomized to oral mycophenolate mofetil (initial dose, 1000 mg/day, increased to 3000 mg/day)</td>
<td>Group 2 – 2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>69 pts (group 2) – randomized to monthly intravenous cyclophosphamide (0.5 g/m² BSA, increased to 1.0 g/m²)</td>
<td>Permanent amenorrhea:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Study</td>
<td>Design</td>
<td>N</td>
<td>Mean age</td>
<td>Treatment Summary</td>
<td>Amenorrhea Results</td>
</tr>
<tr>
<td>-------</td>
<td>--------</td>
<td>---</td>
<td>----------</td>
<td>-------------------</td>
<td>-------------------</td>
</tr>
<tr>
<td>Gourley et al.</td>
<td>Single center RCT</td>
<td>82</td>
<td>30</td>
<td>Methylprednisone 1 g/m^2 BSA IV monthly x 1 year (N=20) Vs. CYC 0.5 to 1 g/m^2 BSA IV monthly x 6 months and then quarterly (N=21) Vs. Methylprednisone + CYC with above doses (N=24)</td>
<td>Sustained amenorrhea (definition not given): Methylpred = 2 (7.4%) CYC = 11 (41%) CYC + Methylpred = 12 (43%)</td>
</tr>
<tr>
<td>Sabry et al.</td>
<td>Randomized controlled trial</td>
<td>46</td>
<td>Biopsy-proven</td>
<td>20 pts (2 male, 18 female) – randomized to 6 fortnightly fixed low-dose CYC (500 mg/dose). 26 pts (5 male, 21 female) – randomized to 6 monthly fixed high-dose CYC + 2 quarterly doses (max 1 g/dose).</td>
<td>Menstrual abnormalities: None recorded</td>
</tr>
<tr>
<td>Mitwalli et al.</td>
<td>Randomized controlled trial</td>
<td>117</td>
<td>Biopsy-proven de novo lupus nephritis</td>
<td>73 pts (group 1, 61 females) – randomized to high-dose CYC (10 mg/kg/month for 6 months then bi-monthly for 36 months). 44 pts (group 2, 39 females) – randomized to low-dose CYC (5 mg/kg/month for 6 months then bi-monthly for 36 months).</td>
<td>Sustained amenorrhea w/o pregnancy: Group 1 – 34.6% (abortion – 1.4%) Group 2 – 13.6% (abortion – 0%)</td>
</tr>
</tbody>
</table>
Table 2: Risk of premature ovarian failure (POF) with cyclophosphamide in lupus patients according to observational data

<table>
<thead>
<tr>
<th>Design</th>
<th>Patient(s)</th>
<th>Intervention</th>
<th>Outcome</th>
<th>Conclusion</th>
<th>Limitations</th>
</tr>
</thead>
</table>
| Alarfaj et al. Fertility, ovarian failure, and pregnancy outcome in SLE patients treated with intravenous cyclophosphamide in Saudi Arabia Clinical Rheumatology (2014) 33, 1731-1736 | Retrospective study
26 years
SLE was diagnosed according to 1982 revised criteria of ACR. Demographic data, treatment modalities, data pertaining to amenorrhea, pregnancy, and its outcome were recorded from medical charts. | N = 535
N = 188 received IV CYC
N = 99 type of amenorrhea assessed in IV CYC receiving married women | The high-dose regimen consisted of IV CYC given as 10 mg/kg doses, monthly for 6 months, thereafter bimonthly for another 12 months (12 doses in 18 months), and the low-dose regimen consisted of doses given as 5 mg/kg doses, monthly for 6 months, thereafter bimonthly for another 36 months (24 doses in 42 months) | Amenorrhea (transient or sustained):
53 of 188 (28.2%) SLE patients treated with CYC developed amenorrhea
POF:
Of the 13 women with sustained amenorrhea, 6 (6.1 %) experienced premature ovarian failure (POF) before the age of 40 years | 28.2% SLE patients treated with CYC developed amenorrhea (transient or sustained)
6.1 % experienced POF before the age of 40 years |
Had to be < 40 years old | N = 157
Group A: CYC 0.75 mg/m² BSA (N=57)
Group B: CYC 0.5 mg/m² BSA (N=50)
Group C: No CYC (N=50) | Group A: 7 (12.3%; p=0.001) had transient amenorrhea and 10 (17.5%, 0.017) had sustained amenorrhea
- 5/6 patients who used drug > 10 months had transient amenorrhea - cumulative dose for transient amen = 16.8 g (14-20; SD=2.8) vs. 13.4 g (11-15; SD=1.8) in unaffected patients, p=0.013
Group B: 10 (20%; p=0.017) had transient amenorrhea and 0 had sustained amenorrhea
- 7/10 patients who used drug > 10 months had transient amenorrhea - cumulative dose for transient amen = 13.2 g (11-15; SD=1.2) vs. 7.5 g (5-9; SD=2.1) in unaffected patients, p=0.01
Median age of amenorrhea onset = 32 years | The most important risk factors were duration of treatment and cumulative dose. |
<table>
<thead>
<tr>
<th>Study</th>
<th>Design</th>
<th>Prevalence Estimate</th>
<th>POF Definition</th>
<th>Baseline Characteristics</th>
<th>CYC dosage</th>
<th>Risk Factor</th>
<th>Notes</th>
</tr>
</thead>
</table>
| Akawatcharangura et al. | Observational | N = 92 | Female SLE patients in Bangkok, Thailand | POF was diagnosed in those who had sustained amenorrhea with the level of estradiol 30pg/mL and follicular stimulating hormone (FSH) 40IU/L
Mean Baseline Characteristics:
Age at enrolment: 30.4, 6.9 (18-40)
Age at diagnosis: 21.8, 6.8 (9-38)
Disease duration (months) 103.2, 67.5 (6.9-314.3) | All patients had received at least one of the following immunosuppressive agents: CYC, azathioprine, mycophenolate mofetil, chlorambucil or cyclosporine for more than 6 months.
POF: 11 of 92 (12%) SLE patients developed POF.
A cumulative dose of CYC of more than 10 g was the only risk factor for POF (hazard ratio 17.0, 95%CI 1.96–147.72, p < 0.01). | 12% of SLE patients developed POF. A cumulative dose of CYC of more than 10 g was the only risk factor for POF. |
| Ghaleb et al. Anti-Müllerian hormone: A marker for ovarian function in systemic lupus erythematosus patients treated with cyclophosphamide | Observational | N = 96 | Female SLE patients in Egypt
Mean Baseline Characteristics (POF vs. menstruating patients):
Age at enrolment: 32.5 ± 3.9 vs. 28.3 ± 5.6
Age at onset: 26.2 ± 3.6 vs. 23.5 ± 4.6
Disease duration (months) 6.2 ± 2 vs. 4.8 ± 2.7 | This was a study evaluating AMH as a predictor of POF. The cohort that did not receive CYC was given corticosteroids or azathioprine.
POF: 12 of 92 (23.1%) of SLE patients treated with IV CYC developed POF whereas none of the patients who did not receive CYC developed POF | CYC treated SLE patients having a frequency of POF of 23.1%. So, for older SLE patients in whom the use of CYC is warranted, a shorter course and lower dosage could be considered. Assessment for AMH assay and AFC can be done before initiating CYC therapy as a better step towards counselling women at risk for ovarian failure. |
| Mayorga et al. Prevalence of premature ovarian failure in patients with systemic lupus erythematosus | Cross-sectional | N = 961 | Consecutive patients with SLE diagnosed according to the ACR criteria and younger than 60 years
N = 652 patients aged <40 years
N = 287 patients exposed to CYC
Age at first exposure, mean (SD): 29.2 (6.9)
Cumulative CYC dose, mean (SD), g: 33.2 (49.7)
POF: 48 of 287 (16.7%) all SLE patients treated with CYC had POF
10.1% SLE patients <40 years treated with CYC had POF | 16.7% all SLE patients treated with CYC had POF
10.1% SLE patients <40 years treated with CYC had POF | CYC treated SLE patients having a frequency of POF of 16.7%, so, for older SLE patients in whom the use of CYC is warranted, a shorter course and lower dosage could be considered. Assessment for AFC can be done before initiating CYC therapy as a better step towards counselling women at risk for ovarian failure. |
<table>
<thead>
<tr>
<th>Source</th>
<th>Study Design</th>
<th>Patient Characteristics</th>
<th>Follow-up</th>
<th>Outcomes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Park et al. Risk of ovarian failure and pregnancy outcome in patients with lupus nephritis treated with intravenous CYC pulse therapy. Lupus (2004) 13, 569-574</td>
<td>Single center retrospective chart review</td>
<td>N=67 SLE class III or IV</td>
<td>Amenorrhea occurred in 25 women (37.3%)</td>
<td>Incidence of ovarian failure by age group: < 20 yrs: 0% 21-31 yrs: 6% 31-40 yrs: 23% > 40 yrs: 75%</td>
</tr>
<tr>
<td>Takada et al. Cytochrome P450 pharmacogenetics as a predictor of toxicity and clinical response to pulse cyclophosphamide in lupus nephritis Arthritis & Rheumatology (2004) 50, 2202-2210</td>
<td>Observational</td>
<td>N = 62 LN III or IV treated with CYC</td>
<td>N = 48 (14 were excluded because they were male or had explained menopause prior to the study)</td>
<td>Determination of selected cytochrome P450 enzyme genotypes may be valuable for predicting the risk of premature ovarian failure in lupus nephritis patients treated with CYC. The association of these genotypes with renal response needs further validation</td>
</tr>
</tbody>
</table>

Table Legend:
- **AMENORRHEA:** no menses x 4 months
- **SUSTAINED AMENORRHEA:** no menses x 12 months
- **IV CYC:** 0.5-0.75 mg/m² x 6 months then q3 months x 18 months
- **AMENORRHEA OCCURRED IN:** 25 women (37.3%)
- **INCIDENCE OF OVARIAN FAILURE BY AGE GROUP:**
 - < 20 yrs: 0%
 - 21-31 yrs: 6%
 - 31-40 yrs: 23%
 - > 40 yrs: 75%
- **INCIDENCE OF OVARIAN FAILURE BY CUMULATIVE DOSE:**
 - < 5 g: 0%
 - 5-10 g: 8%
 - 10-15 g: 25%
 - >15 g: 66%
- **15 WOMEN HAD 19 PREGNANCIES IN THE 45.8 MONTHS FOLLOWING. 2 PREGNANCIES WERE TERMINATED BECAUSE BABY WAS NOT WANTED. THE REST WERE SUCCESSFUL AND WITHOUT PRE-TERM OR LBW.**
- **AGE, DISEASE SEVERITY AND CUMULATIVE DOSE ARE RELATED TO OVARIAN FAILURE. SUCCESSFUL PREGNANCIES CAN RESULT AFTER EXPOSURE.**
<table>
<thead>
<tr>
<th>Study</th>
<th>Design</th>
<th>Patients</th>
<th>Initiation</th>
<th>Treatment</th>
<th>Outcomes</th>
<th>Duration</th>
<th>Cumulative Dose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wang et al. Ovarian failure in oral CYC treatment for SLE Lupus (1995) 4,11-14</td>
<td>Single center retrospective chart review</td>
<td>LN patients resistant to oral prednisone x 12 weeks</td>
<td>Mean age at initiation of CYC = 26.3 (7) years</td>
<td>Oral CYC 1-2 mg/kg/day. Length not provided</td>
<td>18 (19.6%) had oligomenorrhea and 33 (36%) had amenorrhea during therapy</td>
<td>11 (12%) had oligomenorrhea and 25 (27.2%) had sustained amenorrhea after therapy</td>
<td>Mean age of amenorrhea vs. no amenorrhea 30.8 ± 7.4 vs. 24.3 ± 6 (p<0.01) < 21 yrs: 4% 21-30 yrs: 29% > 30 yrs: 54% Mean duration of treatment, amenorrhea vs. no amenorrhea 13.2 ± 7.4 vs. 9.33 ± 6.34 (p<0.018) Mean cumulative dose, amenorrhea vs. no amenorrhea 32.6 ± 21.8 vs. 22.4 ± 16.7 (p=0.018)</td>
</tr>
</tbody>
</table>
Table 3: Risk of premature ovarian failure (POF) with cyclophosphamide in AAV patients according to RCT data

<table>
<thead>
<tr>
<th>Design</th>
<th>Patient(s)</th>
<th>Intervention</th>
<th>Outcome</th>
<th>Conclusion</th>
<th>Limitations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clowse et al. Ovarian reserve diminished by oral cyclophosphamide therapy for Granulomatosis with polyangiitis (Wegener’s) Arthritis Care & Research. 2011;63(12) 1777-1781</td>
<td>N=40 females but ONLY 12 entered the study with normal ovarian reserve at baseline (based on AMH levels) Mean age = 35.2 ± 9.2 (all < 50 years old)</td>
<td>All patients received etanercept 25 mg SC 2x/week in addition to: CYC 2 mg/kg/day + prednisone if severe disease Vs. MTX (or AZA if renal dysfunction) and prednisone if limited disease</td>
<td>6 of 8 (75%) who received CYC developed diminished ovarian reserve. - mean AMH declined from 4.2 ± 2.3 ng/mL to 0.6 ± 0.5 ng/mL 0 of 4 (0%) who did not receive CYC developed diminished ovarian reserve [p < 0.05] - mean AMH increased from 3.3 ± 1 ng/mL to 4 ± 1.4 ng/mL POF occurred predominantly in women > 35</td>
<td>Daily oral CYC, even when administered for < 6 months caused diminished ovarian reserve. Change in AMH correlated inversely with cumulative CYC dose (p < 0.01), with a 0.74 ng/mL decline in AMH level for each 10 gram</td>
<td></td>
</tr>
</tbody>
</table>

Table 4: Risk of premature ovarian failure (POF) with cyclophosphamide in AAV patients according to observational data

<table>
<thead>
<tr>
<th>Design</th>
<th>Patient(s)</th>
<th>Intervention</th>
<th>Outcome</th>
<th>Conclusion</th>
<th>Limitations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Huong et al. Risk of ovarian failure and fertility after IV CYC. A study in 84 patients Journal of Rheumatology 2002;29(12) 2571-2576</td>
<td>N=84 56 patients had SLE 28 had other diseases (mainly AAV) Mean age = 20 ± 10 All had to be < 55 years old</td>
<td>IV CYC pulse - mean CYC dose was 0.9 ± 0.14 g per pulse Mean number of pulses: 13 ± 6.5 Mean follow-up duration: 5.1 ± 3.7 years</td>
<td>23 (27%) women developed amenorrhea (1 to 12 months following CYC) 19 (23%) women developed sustained amenorrhea Mean age at ovarian failure onset = 40 ± 7.6 yrs The rate of sustained amenorrhea was 0 at 25 years, 45% at 31 years and 83.3% over 40 yrs. 16 pregnancies occurred in 8 women after CYC - 2 were aborted due to</td>
<td>The risk of ovarian failure depends on age. Pregnancy may occur during and after CYC with favourable outcomes in 2/3 of cases.</td>
<td></td>
</tr>
</tbody>
</table>
Table 5: Risk of premature ovarian failure (POF) with cyclophosphamide in LN patients according to observational data

<table>
<thead>
<tr>
<th>Design</th>
<th>Patient(s)</th>
<th>Intervention</th>
<th>Outcome</th>
<th>Conclusion</th>
<th>Limitations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Soares et al. Gonad evaluation in male systemic lupus erythematosus Arthritis & Rheumatism 2007 56(7) 2352-2361</td>
<td>N=70 35 SLE patients 35 age matched healthy controls Mean age = 28.9 ± 8.8 yrs</td>
<td>35 consecutive SLE male patients were prospectively evaluated for demographic and clinical features as well as previous and current treatment.</td>
<td>SLE vs. controls:</td>
<td>Gonadal function is severely affected in male SLE patients.</td>
<td>The persistence of abnormal testicular function after 5.11 ± 3.72 years since IV CYC treatment demonstrates by elevated FSH levels and lower testicular volumes support the notion of long-lasting damage to primordial sperm cells and reinforces the need for sperm cryopreservation. Anti-sperm antibody was not involved.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Lower sperm volume (2.3 ± 1 vs. 3.2 ± 1.7 mL; p=0.015)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Lower median sperm count (70 x 10^6/mL vs. 172 x 10^6/mL; p=0.02)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Lower median motile sperm count (32 x 10^6/mL vs. 119 x 10^6/mL; p=0.004)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Lower % of normally formed sperm (11.2 ± 8.3 vs. 17.4 ± 11.3%; p=0.011)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Having children after disease onset (20 vs. 80%; p=0.0001)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SLE patients who had IV CYC:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Lower median sperm concentration (2 x 10^6/mL vs. 82 x 10^6/mL; p=0.0001)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Lower median sperm count (6 x 10^6/mL vs. 10 x 10^6/mL; p=0.0001)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Lower median motile sperm count (2.5 x 10^6 vs. 94 x 10^6; p=0.0001)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Lower % of normally formed sperm (7.5 ± 7.3 vs. 15 ± 8.2%; p=0.011)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Elevated FSH (42.9 vs. 9.5%;</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- 1 was aborted due to SLE relapse
- 3 spontaneous miscarriages occurred
- 10 premature deliveries occurred
- 3 full term deliveries occurred

Azoozoospermia = no spermatozoa in ejaculate
Oligozoospermia = sperm concentration < 20 million/mL
Asthenozoospermia = normal sperm motility in < 50% of sperm
Teratozoospermia = normal sperm morphology in < 30% of sperm by WHO criteria
Oligastenoteratozoospermia = presence of oligozoospermia, asthenozoospermia and teratozoospermia
Silva et al. Gonadal function in male adolescents and young males with juvenile onset SLE Journal of Rheumatology 2002 29(9) 2000-2005

<table>
<thead>
<tr>
<th>N=4</th>
<th>Age 16 to 22</th>
<th>Clinical evaluation — SLE disease severity</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Testicular ultrasound</td>
<td>Sperm concentration and motility according to WHO criteria</td>
</tr>
<tr>
<td></td>
<td>Hormonal levels</td>
<td>Anti-sperm antibodies</td>
</tr>
<tr>
<td>Patient 1 (SLE class V)</td>
<td>8 g (140 mg/kg) exposure to IV CYC</td>
<td>azoospermia</td>
</tr>
<tr>
<td></td>
<td></td>
<td>high FSH (19.9 IU/L) and LH (11 IU/L)</td>
</tr>
<tr>
<td>Patient 2 (SLE class IV)</td>
<td>24.6 g (396 mg/kg) exposure to IV CYC</td>
<td>Oligoastenoteratozoospermia at presentation (while on CYC) and teratospermic 6 months later (no CYC)</td>
</tr>
<tr>
<td>Patient 3 (SLE class IV)</td>
<td>11.1 g (185 mg/kg) exposure to IV CYC, 6.5 years earlier</td>
<td>teratospermic</td>
</tr>
<tr>
<td>Patient 4 (SLE class V)</td>
<td>No exposure to IV CYC</td>
<td>teratospermic</td>
</tr>
</tbody>
</table>

Fertility is decreased in SLE patients.