WHY ISN’T PD THE FIRST CHOICE FOR YOUR PATIENTS?

BC NEPHROLOGY DAYS
VANCOUVER
OCTOBER 2007

Peter G Blake

Professor of Medicine
London Health Sciences Center
University of Western Ontario
GODERICH
est. 2001
12 patients

SARNIA
est. 1975
36 patients

CHATHAM
est. 1996
36 patients

LONDON TILLSONBURG
Proposed, 2002
24 – 30 patients

WOODSTOCK
est. 1997
30 patients

STRATFORD
est. 1997
30 patients

OWEN SOUND
est. 1999
24 patients

HANOVER
est. 1974
21 patients

September 2004
TOPICS TO COVER

• What proportion of patients should do PD?
• Which patients should do PD?
• What are the obstacles to getting patients to do PD?
• How do we grow PD?
FALL IN PD UTILIZATION
CANADA 1993 - 2006

PD Penetration
National, Regional

West
Central
East
National
CAUSES OF DECLINE IN PD USE

• Proliferation of HD units

• Increased patient age and co-morbidity with inability or reluctance to do PD

• Physician concerns about efficacy of therapy
CAUSES OF DECLINE IN PD USE

OTHER POSSIBILITIES

• U.S. studies suggesting higher mortality on PD

• Poor training of fellows in PD?

• PD catheter insertion problems
WHAT PROPORTION OF PATIENTS SHOULD DO PD?

- Huge variation internationally and nationally

- Driven largely by non-medical factors

- Ontario PD Initiative targets 30% PD

- Any evidence?
PD Share Distribution Around the Globe

USRDS 1999
WHAT PROPORTION OF PATIENTS SHOULD DO PD?

• Huge variation internationally and nationally

• Driven largely by non-medical factors

• Ontario PD Initiative targets 30% PD

• Any evidence?
WHAT PROPORTION OF PATIENTS SHOULD DO PD?

- Survival data
- Economic perspective
- Patient views
- Nephrologist views
SURVIVAL ON PD VERSUS HD

• Has been controversial for years

• No randomized trials

• Results depend on methodology

• Results in U.S. tend to differ from those elsewhere
CANADIAN SURVIVAL DATA

Fenton et al (PDI 1998)

Relative risks for PD vs HD

<table>
<thead>
<tr>
<th></th>
<th>AT</th>
<th>ITT</th>
</tr>
</thead>
<tbody>
<tr>
<td>All</td>
<td>0.73*</td>
<td>0.93*</td>
</tr>
<tr>
<td>Non DM < 65</td>
<td>0.53*</td>
<td>0.84</td>
</tr>
<tr>
<td>DM > 65</td>
<td>0.75*</td>
<td>0.95</td>
</tr>
<tr>
<td>Non DM 65+</td>
<td>0.76*</td>
<td>0.90</td>
</tr>
<tr>
<td>DM 65+</td>
<td>0.88</td>
<td>1.04</td>
</tr>
</tbody>
</table>

*95% CI < 1.0
Mortality Rate Ratios for PD Relative to HD

Schaubel et al 1998

Follow-up time (months)

RR (CAPD/CCPD vs. HD)
U.S. DATA - COLLINS HCFA STUDY
AJ KD 1999

• ITT based on modality at 90 days with censoring 60 days post switches and 2 year follow up

• 106,000 incident patients 1994-1998, correction for age and race, diabetics and non diabetic separately
Unadjusted Mortality Rates
PD and HD
Collins et al AJKD 1999

![Graph showing unadjusted mortality rates for PD and HD, with follow-up time from 3 months to 24 months, and death rates ranging from 100 to 400 deaths per 1000 treatment years. The graph compares HD (mean 16.16 months follow-up) and CAPD/CCPD (mean 13.82 months follow-up).]
COMPARATIVE SURVIVAL PD AND HD

- More recently, Ganesh et al (J ASN 2003) and Stack et al (KI 2003) used incident data from USRDS to show that patients with CHF and with CAD had worse survival on PD, especially if diabetic.
Relative Risk of Mortality (PD/HD) in Incident ESRD with Coronary Disease

<table>
<thead>
<tr>
<th></th>
<th>RR (unadj)</th>
<th>RR (adj)</th>
</tr>
</thead>
<tbody>
<tr>
<td>DM</td>
<td>1.07</td>
<td>1.23</td>
</tr>
<tr>
<td></td>
<td>NS</td>
<td>P < 0.001</td>
</tr>
<tr>
<td>Non DM</td>
<td>1.01</td>
<td>1.20</td>
</tr>
<tr>
<td></td>
<td>NS</td>
<td>P < 0.001</td>
</tr>
</tbody>
</table>

Ganesh JASN 2003
Relative Risk of Mortality (PD/HD) in Incident ESRD Without Coronary Disease

<table>
<thead>
<tr>
<th></th>
<th>RR (unadj)</th>
<th>RR (adj)</th>
</tr>
</thead>
<tbody>
<tr>
<td>DM</td>
<td>0.92</td>
<td>1.17</td>
</tr>
<tr>
<td></td>
<td>P < 0.05</td>
<td>P < 0.001</td>
</tr>
<tr>
<td>Non DM</td>
<td>0.69</td>
<td>0.99</td>
</tr>
<tr>
<td></td>
<td>P < 0.001</td>
<td>NS</td>
</tr>
</tbody>
</table>

Ganesh JASN 2003
COMPARATIVE SURVIVAL HD v PD
(Vonesh et al KI 2004)

• USRDS 1995-2000, N = 400,000, incident study

• Stratification by age, diabetes and co-morbidity is required

• 55% had comorbidity, 45% had DM and median age was 65

• RR of mortality expressed as HD:PD
HD v PD by Age, DM and Co-morbidity

Vonesh et al. KI 2004

<table>
<thead>
<tr>
<th></th>
<th>No co-morbidity</th>
<th>Co-morbidity</th>
</tr>
</thead>
<tbody>
<tr>
<td>RR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>No DM 18-44</td>
<td>1.24 (1.07-1.44)</td>
<td>1.19 (0.94-1.50)</td>
</tr>
<tr>
<td>45-64</td>
<td>1.13 (1.02-1.25)</td>
<td>1.01 (0.92-1.11)</td>
</tr>
<tr>
<td>65+</td>
<td>1.13 (1.05-1.21)</td>
<td>0.96 (0.91-1.01)</td>
</tr>
<tr>
<td>DM 18-44</td>
<td>1.22 (1.05-1.42)</td>
<td>1.10 (0.92-1.32)</td>
</tr>
<tr>
<td>45-64</td>
<td>0.92 (0.85-1.00)</td>
<td>0.82 (0.77-0.87)</td>
</tr>
<tr>
<td>65+</td>
<td>0.86 (0.79-0.93)</td>
<td>0.80 (0.76-0.85)</td>
</tr>
</tbody>
</table>
CHOICE STUDY
Jaar et al Ann Intern Med 2005

- National prospective cohort study in U.S.
- NIH/NI DDK funded
- 1041 incident dialysis patients 1995-98
- 81 dialysis centers with oversampling of PD to allow statistical comparison
- Mean follow up 2.4 years (up to 7 years)
Comparative mortality of hemodialysis and peritoneal dialysis in Canada

Seán W. Murphy, Robert N. Foley, Brendan J. Barrett, Gloria M. Kent, Janet Morgan, Paul Barré, Patricia Campbell, Adrian Fine, Marc B. Goldstein, S. Paul Handa, Kailash K. Jindal, Adeera Levin, Henry Mandin, Norman Muirhead, Robert M.A. Richardson, and Patrick S. Parfrey
THE FIRST PROSPECTIVE COHORT COMPARATIVE HD PD STUDY
Murphy et al (KI 2000 57: 1720-26)

• 822 consecutive incident patients at 11 Canadian centres 1993-1994

• Extensive assessment of status and co-morbidity prior to starting dialysis

• Adjustment for demographics and co-morbidity score based on presence and severity of co-morbid conditions

• Mean follow up 24 months (up to 56 months)
PD/HD HAZARD RATIOS FOR MORTALITY UNADJUSTED AND ADJUSTED BY COMORBIDITY AT 0, 3 AND 6 MONTHS (Murphy KI 2000)
COMPARISON OF THE TWO PROSPECTIVE COHORT STUDIES

<table>
<thead>
<tr>
<th></th>
<th>CHOICE</th>
<th>Murphy et al</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>1041</td>
<td>822</td>
</tr>
<tr>
<td>No of centres</td>
<td>81</td>
<td>11</td>
</tr>
<tr>
<td>Enrolment</td>
<td>10 weeks</td>
<td>0 weeks</td>
</tr>
<tr>
<td>Mean follow up</td>
<td>2.4 y</td>
<td>2.0 y</td>
</tr>
<tr>
<td>Mean age (yrs)</td>
<td>54 (P), 59 (H)</td>
<td>56 (P), 59 (H)</td>
</tr>
<tr>
<td>% PD</td>
<td>26</td>
<td>34, 50, 51</td>
</tr>
<tr>
<td>% DM</td>
<td>47</td>
<td>36</td>
</tr>
<tr>
<td>% white</td>
<td>66</td>
<td>80</td>
</tr>
</tbody>
</table>
PD vs HD DANISH REGISTRY
Heaf et al NDT 2002

- Almost 5000 patients treated 1990-1999 – 35% on PD
- Correction for demographics and recorded co-morbidity
- Intent to treat and treatment received analyses
- Survival benefit for PD in first 2 years – no difference subsequently
PD versus HD
(Heaf et al NDT 2002)

<table>
<thead>
<tr>
<th></th>
<th>Intent to treat</th>
<th>As treated</th>
</tr>
</thead>
<tbody>
<tr>
<td>All</td>
<td>0.86 (.57-.74)</td>
<td>0.65 (.59-.72)</td>
</tr>
<tr>
<td>Non-DM</td>
<td>0.84 (.75-.94)</td>
<td>0.61 (.54-.70)</td>
</tr>
<tr>
<td>DM</td>
<td>0.93 (.76-1.14)</td>
<td>0.69 (.57-.85)</td>
</tr>
<tr>
<td>Age > 55</td>
<td>0.85 (.76-.94)</td>
<td>0.66 (.58-.74)</td>
</tr>
<tr>
<td>DM > 55</td>
<td>1.04 (.75-1.43)</td>
<td>0.75 (.57-.99)</td>
</tr>
</tbody>
</table>
SURVIVAL STUDIES

• HD and PD may have modest survival advantages in particular subgroups but these are unproven

• Advantages, if any, are small relative to larger issues

• Broadly speaking, the 2 modalities have equal survival overall
COSTING STUDIES

• Every comparative study in the developed world shows that PD costs substantially less than HD

• The difference in Canada is c 40%

• Cost is not the only factor and we treat individual patients but if all else is equal.....
COMPARATIVE DIALYSIS COSTS BY MODALITY IN CANADA

(Goeree et al 1995)

<table>
<thead>
<tr>
<th></th>
<th>Centre HD</th>
<th>Self-care HD</th>
<th>Home HD</th>
<th>CAPD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Salaries</td>
<td>$19,676</td>
<td>$16,100</td>
<td>$6,780</td>
<td>$6,670</td>
</tr>
<tr>
<td>Supplies</td>
<td>$10,779</td>
<td>$8,236</td>
<td>$9,013</td>
<td>$13,836</td>
</tr>
<tr>
<td>Medicines</td>
<td>$6,226</td>
<td>$4,032</td>
<td>$2,115</td>
<td>$3,547</td>
</tr>
<tr>
<td>Others</td>
<td>$24,474</td>
<td>$7,865</td>
<td>$8,141</td>
<td>$7,865</td>
</tr>
<tr>
<td>Total</td>
<td>$54,929</td>
<td>$43,313</td>
<td>$26,048</td>
<td>$31,918</td>
</tr>
</tbody>
</table>
PATIENT VIEWS

• Prichard et al (PDI 1996) – 150 new starts in Montreal

• 31 directed to HD and 14 to PD

• 31 diabetics encouraged to do PD – 17 did

• The remaining 74 could do either and got free choice – split was 50:50
NEPHROLOGIST VIEWS

- Jung et al (PDI 1999) surveyed all CSN members – 66% replied and recommended HD PD Split was 66:34

- Mendelssohn et al (AJ KD 2001) surveyed US nephrologists and recommended split was 71:29

- Jassal et al (NDT 2002) studied UK nephrologists and suggested split was 62:38
WHAT PROPORTION SHOULD DO PD?

- Survival is broadly similar
- PD costs less
- Half of patients choose PD if given informed choice?
- Nephrologists think about one third should do PD
- So what is the problem!?
WHAT PROPORTION OF PATIENTS CAN DO PD?

• Oliver et al (KI 2007) studied 134 incident patients in Toronto

• 81% had at least 1 potential PD barrier

• With home care support 80% could do PD versus 65% without
Oliver et al (KI 2007)

• Of eligible patients, in areas with home care 59% chose PD versus 58% in areas without home care

• However, the actual utilization of PD was 47% in the home care areas versus 37% in areas without home care
WHICH PATIENTS?

• About 20-30% have a strong contraindication

• Another 20-30% have significant barriers that can be addressed

• The rest are good PD candidates
MAJOR CONTRAINDICATIONS

• Previous major abdominal surgeries
• Ostomies
• Morbid obesity
• Unable to do procedures and no one else to help
• Unwilling to do it
RELATIVE CONTRAINDICATIONS

- Major medical co-morbidity
- Psychiatric illness
- Impaired vision or dexterity
- Poor living conditions
- Unsupportive relatives
• So, what is the problem?

• Why is PD so hard to grow?
OBSTACLES TO PD GROWTH

• Late referrals and ‘parachutes’

• Poorly structured pre dialysis care and education

• Patient procrastination and denial re modality education and selection

• Patient fear and lack of confidence
OBSTACLES TO PD GROWTH

- Physician biases
- Patient body image issues
- Long wait lists for catheters
- High catheter failure rates
- High technique failure
SOLUTIONS TO BARRIERS

- Well organized pre dialysis education
- Insistence on patient and family participation
- Tours of PD unit and meetings with PD nurses and patients for all suitable patients
- Avoid biases or ‘damning by faint praise’!
SOLUTIONS TO BARRIERS

• Constant encouragement to do PD – neutral approach is not enough!

• Follow up post PD selection until dialysis needed

• Apply modality education process to all late referrals, parachutes etc

• Use information technology to do ongoing CQI on the modality selection process
SOLUTIONS TO BARRIERS

- PD catheters
- PD patient retention
PD CATHETERS
PD CATHETERS

• Need for a ‘champion’ – physician, surgeon or radiologist

• Ideal person and technique will vary with centre
PD PATIENT RETENTION

- Peritonitis – CQI initiative needed
- Catheters – likewise
- Patient and Family ‘Burnout’
ONTARIO PD INITIATIVE

• Initiative by Ministry of Health to reverse decline in PD

• Headed by Dimitrios Oreopoulos and Sandra Coleman

• See PDI Sept/Oct 2007

• Article by Oreopoulos and Coleman and Commentary by Jindal
ONTARIO PD INITIATIVE
RECOMMENDATIONS

• Increase PD use to 30% over 2-3 years – target based on physician and patient surveys and cost issues

• For home HD centers total home dialysis should be 40%
ONTARIO PD INITIATIVE COMPONENTS

- Early referral
- Pre dialysis education
- Prompt expert catheter placement
- Data management
Ontario PD Initiative

Improve PD Retention

- CCAC home visits to support PD
- Nursing homes able to deliver PD – one per regional kidney centre
ONTARIO PD INITIATIVE
THE RESPONSE

• Variable response from nephrologists and renal programs

• Concerns re unrealistic targets and time frames

• Concerns re penalties for centres not meeting targets

• Concerns re costs
PD PRESCRIPTION

• If we want to keep patients on PD we need to prescribe it intelligently

• Previous high Kt/V approach was often not lifestyle friendly built is no longer required

• Aiming for Kt/V 1.7 per week is not difficulty
PD PRESCRIPTION

• However, we need to pay attention to volume control in patients

• We also need to be aware of the toxicity of hypertonic glucose

• In particular, think of patient and caregiver lifestyle
SWITCH FROM CAPD TO APD
CANADA 1994 - 2006

2,307
62.2%

1618
37.8%
SWITCH FROM CAPD TO APD

• Mainly driven by convenience and lifestyle factors – for patients and caregivers

• To a lesser extent for medical reasons - clearance and volume reasons or for high transporters

• Cost issues are also a factor
GLUCOSE SPARING STRATEGIES

- Increasing body of evidence that hypertonic glucose is toxic to the peritoneal membrane and may lead to type I membrane failure

- Concerns about effects of glucose absorption on the cardiovascular risk profile
Longitudinal Membrane Transport

D/Pcreatinine at 4 hours

TIME ON TREATMENT

Stable Membrane

Increasing Transport

* P<0.01 between groups and within group, comparing years 4 & 5 with start

Davies et al, JASN 12:1046-51, 2001
Yearly Peritoneal Glucose Exposure

* P<0.03, between groups

Davies et al, JASN 12:1046-51, 2001
EAPOS: Influence of Icodextrin on evolution of solute transport and UF capacity (paired data) (Davies KI 2005)

![Graph showing the influence of Icodextrin on solute transport and UF capacity.](image)

- EAPOS (NO Icodextrin)
- EAPOS (Icodextrin Use)

Key:
- P=0.03
- P=0.001
- P=0.005
- P=0.009
- P=0.001
SYSTEMIC EFFECTS OF GLUCOSE ABSORPTION
SYSTEMIC TOXICITY OF GLUCOSE IN PD PATIENTS

• Exacerbation or induction of diabetes
• Hyperinsulinemia
• Promotion of obesity
• Decreased appetite
• Increases in hyperlipidemia (LDL and TGs)
• Increase in cardiovascular risk
GLUCOSE SPARING STRATEGIES
THE PARADOX

• These are based on minimizing hypertonic glucose exposure

• But volume control often requires greater hypertonic glucose exposure

• There is an apparent contradiction here needing resolution
GLUCOSE SPARING STRATEGIES

• APD can be viewed as a glucose sparing strategy - less glucose exposure per volume of fluid removed

• Icodextrin and i/p amino acids are also glucose sparing

• Salt and water restriction decrease the need for hypertonic glucose
GLUCOSE SPARING STRATEGIES

• Strategies that preserve residual renal function decrease need for hypertonic glucose

• A number of these have become apparent from recent studies
Medcalf et al KI 2001

• Open label RCT of 61 incident PD patients at a single centre randomized to Furosemide 250 od or to control group

• Urine volume maintained in F group but fell in controls (p< .05)

• Urine Na excretion greater in F group (p .04)

• % body water stable in F group but rose in controls (52 vs 64%, p 0.1)
Effect of Furosemide on urine output in CAPD (Medcalf et al KI 2001)

- Single centre, open label RCT

- 60 prevalent CAPD patients with GFR > 2 ml/min, BP > 120/70, no ACEI or ARB x 6 mths, no CHF etc (72/217 eligible)

- Ramipril 5 od in treatment group, same 135/85 BP target in each group - 12 month follow up

- Repeated measures analysis of covariance
GLUCOSE SPARING STRATEGIES

COMMON CLINICAL ERRORS

• It is important to revise target weight up if patients gain body weight on PD

• Otherwise patient may use hypertonic glucose to try and remove body fat

• This may cause volume depletion and promote further obesity
GLUCOSE SPARING STRATEGIES
COMMON CLINICAL ERRORS

• All shortness of breath on exertion is not pulmonary edema. Is it de-conditioning?

• All ankle swelling is not fluid overload. Is it new? Is there another reason?
GLUCOSE SPARING STRATEGIES
COMMON CLINICAL ERRORS

• It is easy to reduce target weight by writing an order on a chart

• You must tell the patient how to do it - more hypertonics or salt and water restriction or diuretics…?

• Many patients think you are asking them to lose body weight by eating less
GLUCOSE SPARING vs VOLUME CONTROL

- So, strategies that minimize salt and water intake, preserve residual renal function and make use of icodextrin plus APD are consistent with both glucose sparing and volume control.

- However, hypertonic glucose is still often indicated.
CONCLUSION

• Growing PD makes sense but is hard to do

• Needs a multifaceted, multidisciplinary approach

• Need to prescribe PD intelligently thinking of clearance, volume and hypertonic glucose minimization and lifestyle