Cysts and Stones

Dr. Caroline Stigant
CKD Symposium
November 29, 2014
OBJECTIVES

• Learn how to manage patients with single and multiple cystic conditions of the kidney (diet / lifestyle, blood pressure, imaging, follow-up, drug therapy)

• Learn what types of kidney stones can form and prevalence of each

• Learn how to prescribe effective preventive therapy for different stone types
CYST CLASSIFICATION – DISTRIBUTION / SIZE / NUMBER

- Simple cysts
- Complex cysts
- PCKD
 - Autosomal recessive
 - Autosomal dominant
- Acquired renal cystic disease
- Medullary Sponge Kidney
- Medullary Cystic disease (‘Autosomal Dominant Interstitial Kidney Disease’)
- Other
 - von Hippel Lindau
 - Tuberous sclerosis
SIMPLE CYSTS

- **Incidence:**
 - Varies by population, age (highest in older males)
 - < 1% below age 30; 30% above 70
 - Bilateral in 9% > 70 years

- **Histopathology:**
 - Single epithelial cell layer, clear or straw coloured fluid within resembling plasma

- **Significance:**
 - None
 - Some case series association with hyperfiltration, mild renal impairment, hypertension, albuminuria
 - Complications rare: Renin-induced hypertension, infection, bleeding (gross hematuria +/- flank pain), obstruction

- No follow-up imaging necessary
COMPLEX CYSTS

Bosniak Renal Cyst Classification System

I - **Simple cyst** with a hairline-thin wall.
- No septa, calcifications, or solid components.
- Water attenuation, no enhancement.

II - **Septa:** few hairline-thin in which not measurable enhancement may be appreciated.
- **Calcification:** fine or a short segment of slightly thickened may be present in the wall or septa.
- **High-attenuation:** uniform in lesions (< 3cm) that are sharply marginated and do not enhance.

IIIF - **Septa:** multiple hairline-thin in which not measurable enhancement of septum or wall is appreciated.
- **Minimal thickening of wall or septa,** which may contain calcification, that may be thick and nodular, but no measurable contrast enhancement.
- No enhancing soft-tissue components.
- **Intrarenal:** totally intrarenal nonenhancing high-attenuating renal lesions; these lesions are generally well marginated.

III - **Measurable enhancement**
Cystic mass with thickened irregular or smooth walls or septa in which measurable enhancement is present

IV - **Enhancing soft-tissue components**
Clearly malignant cystic masses that can have all of the criteria of category III but also contain distinct enhancing soft-tissue components independent of the wall or septa

Bosniak classification of renal cysts

1 - ~0% are malignant
2 - ~0% are malignant
2F - ~5% are malignant
3 - ~50% are malignant
4 - ~100% are malignant

MRI Observe
Most offered surgery
Resect
Cyst criteria for diagnosis if family history **known**:
- 15-39: 3+ cysts unilateral or bilateral
- 40-59: 2+ cysts per kidney
- 60+: 4+ cysts per kidney

If family history **unknown**: no definite number for unequivocal diagnosis, but 10+ per kidney ‘strongly suspect’
PCKD - FEATURES

- Incidence: 1/400
- Renal +/- liver (about 50%) +/- pancreatic cysts
- Cyst complications
 - Bleeding (gross hematuria +/- flank pain), infection, renin-induced hypertension, obstruction, stones
- Mass effects
 - Fullness/bloating, early satiety; transplant considerations
- Hypertension
 - Renin-induced
 - Renal parenchymal
- Extra-renal manifestations:
 - Intracranial aneurysm (incidence 5% < 30 yrs, 20% >60 yrs)
 - Inguinal hernia
 - Cardiac valvular: Mitral valve prolapse >> AR
 - AAA – possibly higher risk
 - Renal Cell Carcinoma- possibly higher risk
- Renal Failure

Chapman AB et al NEJM 1992;327(13):916
PCKD – RENAL FAILURE

• Incidence ESRD 6 PMP; ?majority with PCKD
• Comprise 5-10% of prevalent HD patients in Canada
• Once renal function drops, rate -5 mL/min/year

Higher risk of ESRD if:
 – Pt factors: Genetics (PCKD1 >> PCKD2), male, low birth weight
 – Clinical factors – HTN:
 • GFR > 60, age < 50 aim BP 95/60 – 110/70, choose ACE inhibitor (Schrier R et al, NEJM Nov 2014)
 • GFR 25-60, aim BP 110/70 – 130/80, choose ACE inhibitor (Torres V et al, NEJM Nov 2014)
 – Imaging factors: Nephromegaly
 – Laboratory factors: albuminuria, hyperuricemia, increased urine sodium excretion, increased plasma copeptin level (surrogate for vasopressin)

• Treatment
 – Diet / lifestyle: ? Protein restriction; low Na; fluids > 3L/day, avoid caffeine
 – BP control: ACE inhibitors 1st line; BP target
 – ? mTOR inhibitors, somatostatin, vasopressin receptor antagonists
 – Rarely nephrectomy required

Torres et al. KI 2009;76(2):149
MEDULLARY SPONGE KIDNEY
NEPHROLITHIASIS – A PAINFUL PROBLEM!

• Affects approx 10% of adults
 – Slight male predominance
• Incidence varies geographically
• Approx 50% have one or more recurrence at 10 years
 – Detailed evaluation generally performed for recurrent stone formers
• Can cause significant morbidity
• Rare cause of end-stage kidney failure
PATHOPHYSIOLOGY

- Supersaturation
- Stasis
- Structural abnormality
TYPES OF STONES

• Calcium
 – Calcium oxalate
 – Calcium phosphate

• Uric acid

• Struvite ‘staghorn’
 – Magnesium ammonium phosphate

• Drug-related
 – Creation of metabolic environment favouring stone formation
 – Crystallization of drug itself when supersaturated in urine

• Rare Stone Disorders:
 – APRT Deficiency, Dent Disease, Cystinuria, Primary hyperoxaluria
HOW CAN I TELL WHAT TYPE OF STONE MY PATIENT HAS?

• History
 – Age, comorbidities, medications, family history, occupation / environment, prior kidney or GI surgery

• Physical
 – Urinalysis
 • presence of crystals

• Lab testing
 – Serum: creatinine, bicarbonate, calcium, PTH, glucose/HgA1c, uric acid
 – Urine (24 hr): calcium, uric acid, oxalate, sodium, citrate
 – Urine pH: uric acid crystals form in acidic urine, calcium phosphate crystals form in alkaline urine, urine is alkaline with struvite stones

• Imaging:
 – Radiolucent (uric acid stones) vs opaque (most other stones)
 – ? Nephrocalcinosis

• Stone Analysis
SELECTED MEDICATIONS

• Change urine pH or composition:
 – Vitamin C
 – Vitamin D
 – Calcium (ie. CaCO3)
 – Diuretics: carbonic anhydrase inhibitors, loop diuretics, other (common OTC herbal remedies)

• Drug precipitates:
 – Antimicrobials: acyclovir, amoxicillin, ampicillin, ceftriaxone, ciprofloxacin, sulfamethoxazole
 • Protease inhibitors: indinavir
 – Guaifenesin
 – Triamterene
 – Methotrexate
CALCIUM OXALATE

• Most common (80-85%)
• Presumed diagnosis unless atypical features
• Higher incidence:
 – Post (partial) bowel resection
 – High dose Vitamin C
 – Family history
• Hypercalciuria not necessary
• Hyperoxaluria not necessary
URIC ACID STONES

• Reasonably common
• Risk factors:
 – Gout
 – Chronic diarrhea
 – Obesity
 – Metabolic syndrome / DM
 – Malignancy
• Not seen on plain X-ray
• Hyperuricosuria common
STRUVITE STONES

- Magnesium ammonium phosphate + calcium carbonate
- Formed in infected upper urinary tract:
 - Females, neurogenic bladder, urinary diversion
 - Can grow quickly so often present late
 - UTI symptoms, flank pain, gross hematuria
 - pH > 7
- Antibiotics and surgical removal required
CYSTINE STONES

• Cystinuria 1/7000 live births
 – Reduced renal absorption cystine
 (plus ornithine, lysine, arginine)
• +/- Family history
• Often presents in childhood
• Can form staghorn calculi
• Less radiopaque than calcium stones
WHAT PROVEN TREATMENTS ARE THERE?

• Increasing fluid intake
• Thiazide diuretic (reduces urine calcium)
• Allopurinol (reduces urine uric acid)
• Citrate (raises urine citrate / raises urine pH)
OTHER TREATMENTS

• Diet
• Oral calcium (oxalate binding)
• Disease-specific
 – ie. captopril or penicillamine for cystinuria
• Analgesia
• Alpha blockers (relax smooth muscle tone of ureters to help stone pass / relieve colic)
• Lithotripsy
• Surgical
 – Endoscopic
 – Percutaneous
 – Open

• MEDICAL THERAPY DOES NOT DISSOLVE STONES
DIET - SUMMARY

<table>
<thead>
<tr>
<th>Diet Parameter</th>
<th>Goal (daily)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fluid</td>
<td>Enough for urine output > 2.5 L</td>
</tr>
<tr>
<td>Sodium</td>
<td>< 2000 mg, possibly lower</td>
</tr>
<tr>
<td>Calcium</td>
<td>800-1200 mg (NOT restricted!)</td>
</tr>
<tr>
<td>Oxalate</td>
<td>40-50 mg</td>
</tr>
<tr>
<td>Citrate</td>
<td>? Specific target</td>
</tr>
<tr>
<td>Protein</td>
<td>< 6 oz</td>
</tr>
<tr>
<td>Vitamin C</td>
<td>< 1000 mg</td>
</tr>
</tbody>
</table>
Case 1 - Patient AS

• 34 F 4 year history of recurrent nephrolithiasis, onset with renal colic at age 26 when pregnant
 – Every 6 months, then monthly severe colic
 – Stone obstruction twice (9mm, 1.2cm); bilateral ureteric obstruction with urosepsis
 – Ureteric stents placed on multiple occasions

• No family history

• CT-KUB consistent with medullary sponge kidneys; multiple bilateral calculi up to 3 mm in size
• Normal serum biochemistry
• Stone analysis: calcium oxalate
• Urinalysis: pH 6.5, RBC 40-100/hpf
• 24 hr urine:
 – Volume 3.7 L
 – Calcium 5.2 (2.2-6.5 mmol/d)
 – Oxalate 344 (40-340 umol/d)
 – Citrate 4.44 (0.7-4.9 mmol/d)
 – Sodium 207 (40-220 mmol/d)
 – Uric acid 3.4 (1-3.8 mmol/d)
AS – follow-up 3 years later...

• Therapy:
 – HCTZ 12.5 mg po BID
 – Potassium citrate 50 mEq po TID
 – Prazosin 1 mg po OD
 – Cipro 500 mg po OD
 – Endoscopic stone extraction & laser lithotripsy x2

• Urine pH 8.5

• Urine volume still high, biochemistry still normal

• Right hydronephrosis with multiple impacted ureteric stones – currently awaiting surgery
Case 2 – Patient WM

- 32 F of Chinese descent, presented with creatinine 106 on routine lab testing
 - U/S: nephrocalcinosis, bilateral hydronephrosis, cortical thinning
 - CT: staghorn calculi bilaterally, multiple intrarenal stones
- Extensive surgery / subsequent surgeries
- Pregnancy with nephrolithiasis complicating
- Urine amino acid electrophoresis: urine cystine excretion 4x normal
- Increased fluids, diet control, and K citrate
OBJECTIVES REVISITED

• Learn how to manage patients with single and multiple cystic conditions of the kidney (diet / lifestyle, blood pressure, imaging, follow-up, drug therapy)

• Learn what types of kidney stones can form and prevalence of each

• Learn how to prescribe effective preventive therapy for different stone types