Change in GFR and Subsequent Mortality: Meta-Analysis of 32 Cohorts in the CKD Prognosis Consortium

Tanvir Chowdhury Turin, MBBS, Kunihiro Matsushita, MD, PhD, Josef Coresh, MD, PhD, FASN, Hisatomi Arima, MD, PhD, Steven J. Chadban, MBBS, PhD, Massimo Cirillo, MD, Ognjenka Djurdjev, MD, Alton Jamie Green, MD, Fujiko Irie, MD, Joachim H. Ix, MD, FASN, Csaba P. Kovesdy, MD, Takayoshi Ohkubo, MD, PhD, Chi Pang Wen, MD, PhD, Paul E. de Jong, MD, PhD, Kunitoshi Iseki, MD, Benedicte Stengel, MD, PhD, Ron T. Gansevoort, MD, PhD

BACKGROUND: Change in estimated GFR (eGFR) is frequently used to track CKD progression in clinical practice, trials and cohort studies but its association with mortality has not been studied extensively.

METHODS: Change in eGFR was estimated as % change from the first to last eGFR (CKD-EPI creatinine) in a 2-year baseline period. We modeled the hazard ratios (HRs) of subsequent mortality as a spline function of %change in eGFR after adjusting for age, sex, race, first eGFR, and co-morbid conditions. We used random effects meta-analyses to combine results stratified by first baseline eGFR (<60 & ≥60) across studies.

RESULTS: Mortality follow-up of 910,660 participants from 32 cohorts for a mean of 4.2 years after the 2-year baseline period showed 91,398 deaths for baseline eGFR <60 (n=333,722) and 45,063 deaths for baseline eGFR ≥60 (n=576,938). Change in eGFR had a non-linear association with mortality (Figure for eGFR<60). A decline in eGFR was consistently associated with higher subsequent mortality risk (adjusted HR for -30% vs. 0% change in eGFR were: 1.8 at eGFR <60; and 1.5 at eGFR ≥60; p<0.001). Similar results were obtained for a 1- or 3-year change in eGFR. Hazards ratios were largely similar for those with eGFR ≥60 or when stratified by ACR levels.

CONCLUSIONS: Declines in eGFR are strongly and consistently associated with subsequent risk of mortality adjusted for the first eGFR and covariates. These findings support using smaller changes than -57% (equivalent to doubling of serum creatinine) in clinical research.
Figure. Adjusted mortality hazard ratio vs. % 2-year change in eGFR. Baseline eGFR<60.

- eGFR<60 (333,722 people, 32 cohorts)

-57% (Creatinine)
-40% (Creatinine)
-30% (Creatinine)

Ref. 0%